Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1985, Volume 63, Number 2, Pages 175–196 (Mi tmf4754)  

This article is cited in 77 scientific papers (total in 77 papers)

Irreducible monodromy matrices for the R matrix of the XXZ model and local lattice quantum Hamiltonians

V. O. Tarasov
References:
Abstract: Monodromy matrices with vacuum and finite-dimensional single-particle subspace are considered for the R matrices of the XXX and XXZ models. A natural class of monodromy matrices – irreducible monodromy matrices – is described; for these matrices, the propositions proposed earlier as natural hypotheses are valid. The existence of local Hamiltonians is proved for quantum integrable models on a lattice with irreducible local monodromy matrices.
Received: 23.05.1984
English version:
Theoretical and Mathematical Physics, 1985, Volume 63, Issue 2, Pages 440–454
DOI: https://doi.org/10.1007/BF01017900
Bibliographic databases:
Language: Russian
Citation: V. O. Tarasov, “Irreducible monodromy matrices for the R matrix of the XXZ model and local lattice quantum Hamiltonians”, TMF, 63:2 (1985), 175–196; Theoret. and Math. Phys., 63:2 (1985), 440–454
Citation in format AMSBIB
\Bibitem{Tar85}
\by V.~O.~Tarasov
\paper Irreducible monodromy matrices for the $R$ matrix of the $XXZ$ model and local lattice quantum Hamiltonians
\jour TMF
\yr 1985
\vol 63
\issue 2
\pages 175--196
\mathnet{http://mi.mathnet.ru/tmf4754}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=800062}
\transl
\jour Theoret. and Math. Phys.
\yr 1985
\vol 63
\issue 2
\pages 440--454
\crossref{https://doi.org/10.1007/BF01017900}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1985AVT5500002}
Linking options:
  • https://www.mathnet.ru/eng/tmf4754
  • https://www.mathnet.ru/eng/tmf/v63/i2/p175
  • This publication is cited in the following 77 articles:
    1. Hao Chang, Jinxin Hu, Lewis Topley, “Modular representations of the Yangian Y2$Y_2$”, Journal of London Math Soc, 111:1 (2025)  crossref
    2. Samuel Belliard, Rodrigo Alves Pimenta, Nikita A. Slavnov, “Modified rational six vertex model on the rectangular lattice”, SciPost Phys., 16:1 (2024), 9–20  mathnet  crossref
    3. A. I. Molev, “Representations of the Yangians Associated with Lie Superalgebras $\mathfrak {osp}(1|2n)$”, Commun. Math. Phys., 398:2 (2023), 541  crossref
    4. Slaven Kožić, “On the h-adic Quantum Vertex Algebras Associated with Hecke Symmetries”, Commun. Math. Phys., 397:2 (2023), 607  crossref
    5. A. I. Molev, “Odd reflections in the Yangian associated with $\mathfrak {gl}(m|n)$”, Lett Math Phys, 112:1 (2022)  crossref
    6. D. Karakhanyan, R. Kirschner, “Representations of orthogonal and symplectic Yangians”, Nuclear Physics B, 967 (2021), 115402  crossref
    7. Naihuan Jing, Ming Liu, Alexander Molev, “Isomorphism between the $R$-Matrix and Drinfeld Presentations of Quantum Affine Algebra: Types $B$ and $D$”, SIGMA, 16 (2020), 043, 49 pp.  mathnet  crossref
    8. Naihuan Jing, Ming Liu, Alexander Molev, “Representations of Quantum Affine Algebras in their $R$-Matrix Realization”, SIGMA, 16 (2020), 145, 25 pp.  mathnet  crossref
    9. Naihuan Jing, Ming Liu, Alexander Molev, “Isomorphism between the R-matrix and Drinfeld presentations of quantum affine algebra: Type C”, Journal of Mathematical Physics, 61:3 (2020)  crossref
    10. Shi-Yao Hou, Ningping Cao, Sirui Lu, Yi Shen, Yiu-Tung Poon, Bei Zeng, “Determining system Hamiltonian from eigenstate measurements without correlation functions”, New J. Phys., 22:8 (2020), 083088  crossref
    11. Stukopin V., Xxv International Conference on Integrable Systems and Quantum Symmetries (Isqs-25), Journal of Physics Conference Series, 965, IOP Publishing Ltd, 2018  crossref  isi  scopus
    12. Nicolas Guay, Vidas Regelskis, Curtis Wendlandt, “Twisted Yangians of small rank”, Journal of Mathematical Physics, 57:4 (2016)  crossref
    13. S. Belliard, R.A. Pimenta, “Modified algebraic Bethe ansatz for XXZ chain on the segment – II – general cases”, Nuclear Physics B, 894 (2015), 527  crossref
    14. Samuel Belliard, “Modified algebraic Bethe ansatz for XXZ chain on the segment – I: Triangular cases”, Nuclear Physics B, 892 (2015), 1  crossref
    15. M. Wheeler, “Scalar Products in Generalized Models with SU(3)-Symmetry”, Commun. Math. Phys., 327:3 (2014), 737  crossref
    16. D Chicherin, S Derkachov, “The R-operator for a modular double”, J. Phys. A: Math. Theor., 47:11 (2014), 115203  crossref
    17. Sergey Khoroshkin, Maxim Nazarov, Alexander Shapiro, “Rational and polynomial representations of Yangians”, Journal of Algebra, 418 (2014), 265  crossref
    18. V. A. Stukopin, “Representations of the Yangian of a Lie superalgebra of type $A(m,n)$”, Izv. Math., 77:5 (2013), 1021–1043  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    19. Vladimir Stukopin, “On representations of Yangian of Lie SuperalgebraA(n,n) type”, J. Phys.: Conf. Ser., 411 (2013), 012027  crossref
    20. Sachin Gautam, Valerio Toledano Laredo, “Yangians and quantum loop algebras”, Sel. Math. New Ser., 19:2 (2013), 271  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:565
    Full-text PDF :244
    References:62
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025