Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1985, Volume 63, Number 1, Pages 88–96 (Mi tmf4748)  

This article is cited in 2 scientific papers (total in 2 papers)

Functional integral for systems with constraints that depend explicitly on the time

B. M. Barbashov, V. V. Nesterenko, A. M. Chervyakov
Full-text PDF (881 kB) Citations (2)
References:
Abstract: It is shown that the rules for constructing the functional integral in phase space for systems with singular Lagrangiaus proposed by Faddeev also remain valid when gauge conditions that depend explicitly on the time are used. Such conditions must be considered, for example, in the case when the canonical Hamiltonian in the theory is identically equal to zero (relativistic point particle, relativistic string, etc.). The functional integral is first expressed in terms of the physical canonical variables, for the separation of which a canonical transformation determined by the gauge conditions is used. In the case of nonstationary gauge conditions, the canonical transformation depends explicitly on the time. This leads to an additional (compared with the case considered by Faddeev) term in the Hamiltonian that determines the dynamics on the physical submanifold of the phase space.
Received: 12.06.1984
English version:
Theoretical and Mathematical Physics, 1985, Volume 63, Issue 1, Pages 383–389
DOI: https://doi.org/10.1007/BF01017838
Bibliographic databases:
Language: Russian
Citation: B. M. Barbashov, V. V. Nesterenko, A. M. Chervyakov, “Functional integral for systems with constraints that depend explicitly on the time”, TMF, 63:1 (1985), 88–96; Theoret. and Math. Phys., 63:1 (1985), 383–389
Citation in format AMSBIB
\Bibitem{BarNesChe85}
\by B.~M.~Barbashov, V.~V.~Nesterenko, A.~M.~Chervyakov
\paper Functional integral for systems with constraints that depend explicitly on the time
\jour TMF
\yr 1985
\vol 63
\issue 1
\pages 88--96
\mathnet{http://mi.mathnet.ru/tmf4748}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=794474}
\transl
\jour Theoret. and Math. Phys.
\yr 1985
\vol 63
\issue 1
\pages 383--389
\crossref{https://doi.org/10.1007/BF01017838}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1985ATJ6000007}
Linking options:
  • https://www.mathnet.ru/eng/tmf4748
  • https://www.mathnet.ru/eng/tmf/v63/i1/p88
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:270
    Full-text PDF :122
    References:42
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024