Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1985, Volume 63, Number 1, Pages 11–31 (Mi tmf4743)  

This article is cited in 72 scientific papers (total in 72 papers)

Maxwell–Bloch equation and the inverse scattering method

I. R. Gabitov, V. E. Zakharov, A. V. Mikhailov
References:
Abstract: The inverse scattering method is used to construct general solutions of the Maxwell–Bloch system, these solutions being determined by specification of the polarization as $t\to\infty$. The solutions are classified. An approximate solution is obtained for the mixed boundary-value problem for the Maxwell–Bloch system describing the phenomenon of superfluorescence (generation of a pulse from initial fluctuations of the polarization in a mirrorless laser).
Received: 01.03.1984
English version:
Theoretical and Mathematical Physics, 1985, Volume 63, Issue 1, Pages 328–343
DOI: https://doi.org/10.1007/BF01017833
Bibliographic databases:
Language: Russian
Citation: I. R. Gabitov, V. E. Zakharov, A. V. Mikhailov, “Maxwell–Bloch equation and the inverse scattering method”, TMF, 63:1 (1985), 11–31; Theoret. and Math. Phys., 63:1 (1985), 328–343
Citation in format AMSBIB
\Bibitem{GabZakMik85}
\by I.~R.~Gabitov, V.~E.~Zakharov, A.~V.~Mikhailov
\paper Maxwell--Bloch equation and the inverse scattering method
\jour TMF
\yr 1985
\vol 63
\issue 1
\pages 11--31
\mathnet{http://mi.mathnet.ru/tmf4743}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=794469}
\transl
\jour Theoret. and Math. Phys.
\yr 1985
\vol 63
\issue 1
\pages 328--343
\crossref{https://doi.org/10.1007/BF01017833}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1985ATJ6000002}
Linking options:
  • https://www.mathnet.ru/eng/tmf4743
  • https://www.mathnet.ru/eng/tmf/v63/i1/p11
  • This publication is cited in the following 72 articles:
    1. Chen-Di Zhu, Jing Kang, Long-Xing Li, “Conservation Laws, Darboux Transformation and Soliton Solutions of a Negative Order Generalized Ablowitz-Kaup-Newell-Segur System”, Int J Theor Phys, 64:3 (2025)  crossref
    2. Sitai Li, “On Zero-Background Solitons of the Sharp-Line Maxwell–Bloch Equations”, Commun. Math. Phys., 406:4 (2025)  crossref
    3. Sitai Li, Peter D. Miller, “On the Maxwell‐Bloch system in the sharp‐line limit without solitons”, Comm Pure Appl Math, 77:1 (2024), 457  crossref
    4. Asela Abeya, Gino Biondini, Gregor Kovačič, Barbara Prinari, “On Maxwell-Bloch Systems with Inhomogeneous Broadening and One-sided Nonzero Background”, Commun. Math. Phys., 405:8 (2024)  crossref
    5. Gino Biondini, Barbara Prinari, Zechuan Zhang, “Local and global well-posedness of the Maxwell-Bloch system of equations with inhomogeneous broadening”, Advances in Nonlinear Analysis, 13:1 (2024)  crossref
    6. M. Filipkovska, “Initial-Boundary Value Problem for the Maxwell–Bloch Equations with an Arbitrary Inhomogeneous Broadening and Periodic Boundary Function”, SIGMA, 19 (2023), 096, 39 pp.  mathnet  crossref
    7. Xin Wang, Jingsong He, “Darboux transformation and general soliton solutions for the reverse space–time nonlocal short pulse equation”, Physica D: Nonlinear Phenomena, 446 (2023), 133639  crossref
    8. Volodymyr Kotlyarov, Oleksandr Minakov, “Maxwell–Bloch equations without spectral broadening: the long-time asymptotics of an input pulse in a long two-level laser amplifier”, Nonlinearity, 36:9 (2023), 5007  crossref
    9. Mansur I. Ismailov, Cihan Sabaz, “Inverse Scattering Method via Riemann–Hilbert Problem for Nonlinear Klein–Gordon Equation Coupled with a Scalar Field”, J. Phys. Soc. Jpn., 92:10 (2023)  crossref
    10. Xin Wang, Lei Wang, Chong Liu, Bowen Guo, Jiao Wei, “Rogue waves, semirational rogue waves and W-shaped solitons in the three-level coupled Maxwell–Bloch equations”, Communications in Nonlinear Science and Numerical Simulation, 107 (2022), 106172  crossref
    11. Jin-Yan Zhu, Yong Chen, “Long-time asymptotic behavior of the coupled dispersive AB system in low regularity spaces”, Journal of Mathematical Physics, 63:11 (2022)  crossref
    12. Xin Wang, Lei Wang, Jiao Wei, Bowen Guo, Jingfeng Kang, “Rogue waves in the three-level defocusing coupled Maxwell–Bloch equations”, Proc. R. Soc. A., 477:2256 (2021)  crossref
    13. M. S. Filipkovska, V. P. Kotlyarov, “Propagation of electric field generated by periodic pumping in a stable medium of two-level atoms of the Maxwell–Bloch model”, Journal of Mathematical Physics, 61:12 (2020)  crossref
    14. Da-Wei Zuo, Gui-Fang Zhang, “Soliton interaction for Maxwell-Bloch system”, Optik, 221 (2020), 164960  crossref
    15. Gino Biondini, Ildar Gabitov, Gregor Kovačič, Sitai Li, “Inverse scattering transform for two-level systems with nonzero background”, Journal of Mathematical Physics, 60:7 (2019)  crossref
    16. Vladimir P. Kotlyarov, “A Matrix Baker–Akhiezer Function Associated with the Maxwell–Bloch Equations and their Finite-Gap Solutions”, SIGMA, 14 (2018), 082, 27 pp.  mathnet  crossref
    17. Sitai Li, Gino Biondini, Gregor Kovačič, Ildar Gabitov, “Resonant optical pulses on a continuous-wave background in two-level active media”, EPL, 121:2 (2018), 20001  crossref
    18. Vl. V. Kocharovsky, V. V. Zheleznyakov, E. R. Kocharovskaya, V. V. Kocharovsky, “Superradiance: the principles of generation and implementation in lasers”, Phys. Usp., 60:4 (2017), 345–384  mathnet  crossref  crossref  adsnasa  isi  elib
    19. M. S. Filipkovska, V. P. Kotlyarov, E. A. Melamedova (Moskovchenko), “Maxwell–Bloch equations without spectral broadening: gauge equivalence, transformation operators and matrix Riemann–Hilbert problems”, Zhurn. matem. fiz., anal., geom., 13:2 (2017), 119–153  mathnet  crossref
    20. Lihua Zhang, Fengsheng Xu, Lixin Ma, “Optimal system, group invariant solutions and conservation laws of the CGKP equation”, Nonlinear Dyn, 88:4 (2017), 2503  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:2063
    Full-text PDF :820
    References:132
    First page:3
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025