Abstract:
A reduction theorem is formulated and proved. Smooth real solutions of the abelian Toda lattice of the genus 4 and 5 are obtained in terms of the elliptic functions. In terms of the g-dimensional theta-functions the solutions of the genus 2g and 2g+1 are constructed for the discrete Peierls–Fröhlich model in the absence of intramolecular deformation.
Citation:
A. O. Smirnov, “Finite-gap solutions of Abelian Toda chain of genus 4 and 5 in elliptic functions”, TMF, 78:1 (1989), 11–21; Theoret. and Math. Phys., 78:1 (1989), 6–13
This publication is cited in the following 17 articles:
A. O. Smirnov, “Konechnozonnye resheniya uravneniya mKdF: klassicheskaya i alternativnye formuly”, Algebra i analiz, 37:2 (2025), 156–176
I T Habibullin, A R Khakimova, A O Smirnov, “Construction of exact solutions to the Ruijsenaars–Toda lattice via generalized invariant manifolds”, Nonlinearity, 36:1 (2023), 231
V. B. Matveev, A. O. Smirnov, “Dubrovin method and Toda lattice”, St. Petersburg Math. J., 34:6 (2023), 1019–1037
A. Smirnov, M. Pavlov, V. Matveev, V. Gerdjikov, Proceedings of Symposia in Pure Mathematics, 103.1, Integrability, Quantization, and Geometry, 2021, 429
V. B. Matveev, A. O. Smirnov, “Elliptic solitons and «freak waves»”, St. Petersburg Math. J., 33:3 (2022), 523–551
V. B. Matveev, A. O. Smirnov, “Two-phase periodic solutions to the AKNS hierarchy equations”, J. Math. Sci. (N. Y.), 242:5 (2019), 722–741
A. O. Smirnov, G. M. Golovachev, “Trekhfaznye resheniya nelineinogo uravneniya Shredingera v ellipticheskikh funktsiyakh”, Nelineinaya dinam., 9:3 (2013), 389–407
A. O. Smirnov, “Elliptic breather for nonlinear Shrödinger equation”, J. Math. Sci. (N. Y.), 192:1 (2013), 117–125
A. O. Smirnov, “Solution of a nonlinear Schrödinger equation in the form of two-phase
freak waves”, Theoret. and Math. Phys., 173:1 (2012), 1403–1416
A. O. Smirnov, G. M. Golovachev, E. G. Amosenok, “Dvukhzonnye 3-ellipticheskie resheniya uravnenii Bussineska i Kortevega–de Friza”, Nelineinaya dinam., 7:2 (2011), 239–256
Evgeniy Gennadievich Amosenok, Aleksandr Olegovich Smirnov, “Two-Gap Two-Elliptic Solution of Boussinesq Equation”, Lett Math Phys, 96:1-3 (2011), 157
A. O. Smirnov, “Elliptic in t solutions of the nonlinear Schrödinger equation”, Theoret. and Math. Phys., 107:2 (1996), 568–578
A. O. Smirnov, “Two-gap elliptic solutions to integrable nonlinear equations”, Math. Notes, 58:1 (1995), 735–743
A. O. Smirnov, “Elliptic solutions of the nonlinear Schrödinger equation and the modified Korteweg–de Vries equation”, Russian Acad. Sci. Sb. Math., 82:2 (1995), 461–470
A. O. Smirnov, “Solutions of the KdV equation elliptic in t”, Theoret. and Math. Phys., 100:2 (1994), 937–947
A. O. Smirnov, “Real elliptic solutions of the “sine-Gordon” equation”, Math. USSR-Sb., 70:1 (1991), 231–240
I. A. Taimanov, “Elliptic solutions of nonlinear equations”, Theoret. and Math. Phys., 84:1 (1990), 700–706