Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1989, Volume 78, Number 1, Pages 11–21 (Mi tmf4712)  

This article is cited in 17 scientific papers (total in 17 papers)

Finite-gap solutions of Abelian Toda chain of genus 4 and 5 in elliptic functions

A. O. Smirnov
References:
Abstract: A reduction theorem is formulated and proved. Smooth real solutions of the abelian Toda lattice of the genus 4 and 5 are obtained in terms of the elliptic functions. In terms of the g-dimensional theta-functions the solutions of the genus 2g and 2g+1 are constructed for the discrete Peierls–Fröhlich model in the absence of intramolecular deformation.
Received: 09.06.1987
English version:
Theoretical and Mathematical Physics, 1989, Volume 78, Issue 1, Pages 6–13
DOI: https://doi.org/10.1007/BF01016911
Bibliographic databases:
Language: Russian
Citation: A. O. Smirnov, “Finite-gap solutions of Abelian Toda chain of genus 4 and 5 in elliptic functions”, TMF, 78:1 (1989), 11–21; Theoret. and Math. Phys., 78:1 (1989), 6–13
Citation in format AMSBIB
\Bibitem{Smi89}
\by A.~O.~Smirnov
\paper Finite-gap solutions of~Abelian Toda chain of~genus~4 and 5 in~elliptic functions
\jour TMF
\yr 1989
\vol 78
\issue 1
\pages 11--21
\mathnet{http://mi.mathnet.ru/tmf4712}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=987408}
\transl
\jour Theoret. and Math. Phys.
\yr 1989
\vol 78
\issue 1
\pages 6--13
\crossref{https://doi.org/10.1007/BF01016911}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1989AL44300002}
Linking options:
  • https://www.mathnet.ru/eng/tmf4712
  • https://www.mathnet.ru/eng/tmf/v78/i1/p11
  • This publication is cited in the following 17 articles:
    1. A. O. Smirnov, “Konechnozonnye resheniya uravneniya mKdF: klassicheskaya i alternativnye formuly”, Algebra i analiz, 37:2 (2025), 156–176  mathnet
    2. I T Habibullin, A R Khakimova, A O Smirnov, “Construction of exact solutions to the Ruijsenaars–Toda lattice via generalized invariant manifolds”, Nonlinearity, 36:1 (2023), 231  crossref
    3. V. B. Matveev, A. O. Smirnov, “Dubrovin method and Toda lattice”, St. Petersburg Math. J., 34:6 (2023), 1019–1037  mathnet  crossref
    4. A. Smirnov, M. Pavlov, V. Matveev, V. Gerdjikov, Proceedings of Symposia in Pure Mathematics, 103.1, Integrability, Quantization, and Geometry, 2021, 429  crossref
    5. V. B. Matveev, A. O. Smirnov, “Elliptic solitons and «freak waves»”, St. Petersburg Math. J., 33:3 (2022), 523–551  mathnet  crossref
    6. V. B. Matveev, A. O. Smirnov, “Two-phase periodic solutions to the AKNS hierarchy equations”, J. Math. Sci. (N. Y.), 242:5 (2019), 722–741  mathnet  crossref
    7. A. O. Smirnov, G. M. Golovachev, “Trekhfaznye resheniya nelineinogo uravneniya Shredingera v ellipticheskikh funktsiyakh”, Nelineinaya dinam., 9:3 (2013), 389–407  mathnet
    8. A. O. Smirnov, “Elliptic breather for nonlinear Shrödinger equation”, J. Math. Sci. (N. Y.), 192:1 (2013), 117–125  mathnet  crossref  mathscinet
    9. A. O. Smirnov, “Solution of a nonlinear Schrödinger equation in the form of two-phase freak waves”, Theoret. and Math. Phys., 173:1 (2012), 1403–1416  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    10. A. O. Smirnov, G. M. Golovachev, E. G. Amosenok, “Dvukhzonnye 3-ellipticheskie resheniya uravnenii Bussineska i Kortevega–de Friza”, Nelineinaya dinam., 7:2 (2011), 239–256  mathnet  elib
    11. Evgeniy Gennadievich Amosenok, Aleksandr Olegovich Smirnov, “Two-Gap Two-Elliptic Solution of Boussinesq Equation”, Lett Math Phys, 96:1-3 (2011), 157  crossref
    12. A. O. Smirnov, “Elliptic in t solutions of the nonlinear Schrödinger equation”, Theoret. and Math. Phys., 107:2 (1996), 568–578  mathnet  crossref  crossref  mathscinet  zmath  isi
    13. A. O. Smirnov, “Two-gap elliptic solutions to integrable nonlinear equations”, Math. Notes, 58:1 (1995), 735–743  mathnet  crossref  mathscinet  zmath  isi
    14. A. O. Smirnov, “Elliptic solutions of the nonlinear Schrödinger equation and the modified Korteweg–de Vries equation”, Russian Acad. Sci. Sb. Math., 82:2 (1995), 461–470  mathnet  crossref  mathscinet  zmath  isi
    15. A. O. Smirnov, “Solutions of the KdV equation elliptic in t”, Theoret. and Math. Phys., 100:2 (1994), 937–947  mathnet  crossref  mathscinet  zmath  isi
    16. A. O. Smirnov, “Real elliptic solutions of the “sine-Gordon” equation”, Math. USSR-Sb., 70:1 (1991), 231–240  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    17. I. A. Taimanov, “Elliptic solutions of nonlinear equations”, Theoret. and Math. Phys., 84:1 (1990), 700–706  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:476
    Full-text PDF :114
    References:62
    First page:1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025