Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2001, Volume 127, Number 3, Pages 432–443
DOI: https://doi.org/10.4213/tmf471
(Mi tmf471)
 

This article is cited in 17 scientific papers (total in 17 papers)

Self-Dual Vortices in Chern–Simons Hydrodynamics

J.-H. Leea, O. K. Pashaevbc

a Institute of Mathematics, Academia Sinica
b Joint Institute for Nuclear Research
c Izmir Institute of Technology
References:
Abstract: The classical theory of a nonrelativistic charged particle interacting with a $U(1)$ gauge field is reformulated as the Schrцdinger wave equation modified by the de Broglie–Bohm nonlinear quantum potential. The model is gauge equivalent to the standard Schrödinger equation with the Planck constant $\hbar$ for the deformed strength $1-\hbar^2$ of the quantum potential and to the pair of diffusion-antidiffusion equations for the strength $1+\hbar^2$. Specifying the gauge field as the Abelian Chern–Simons (CS) one in $2+1$ dimensions interacting with the nonlinear Schrödinger (NLS) field (the Jackiw–Pi model), we represent the theory as a planar Madelung fluid, where the CS Gauss law has the simple physical meaning of creation of the local vorticity for the fluid flow. For the static flow when the velocity of the center-of-mass motion (the classical velocity) is equal to the quantum velocity (generated by the quantum potential velocity of the internal motion), the fluid admits an $N$-vortex solution. Applying a gauge transformation of the Auberson–Sabatier type to the phase of the vortex wave function, we show that deformation parameter $\hbar$, the CS coupling constant, and the quantum potential strength are quantized. We discuss reductions of the model to $1+1$ dimensions leading to modified NLS and DNLS equations with resonance soliton interactions.
English version:
Theoretical and Mathematical Physics, 2001, Volume 127, Issue 3, Pages 779–788
DOI: https://doi.org/10.1023/A:1010451802189
Bibliographic databases:
Language: Russian
Citation: J.-H. Lee, O. K. Pashaev, “Self-Dual Vortices in Chern–Simons Hydrodynamics”, TMF, 127:3 (2001), 432–443; Theoret. and Math. Phys., 127:3 (2001), 779–788
Citation in format AMSBIB
\Bibitem{LeePas01}
\by J.-H.~Lee, O.~K.~Pashaev
\paper Self-Dual Vortices in Chern--Simons Hydrodynamics
\jour TMF
\yr 2001
\vol 127
\issue 3
\pages 432--443
\mathnet{http://mi.mathnet.ru/tmf471}
\crossref{https://doi.org/10.4213/tmf471}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1869965}
\zmath{https://zbmath.org/?q=an:0993.81006}
\transl
\jour Theoret. and Math. Phys.
\yr 2001
\vol 127
\issue 3
\pages 779--788
\crossref{https://doi.org/10.1023/A:1010451802189}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000170636700009}
Linking options:
  • https://www.mathnet.ru/eng/tmf471
  • https://doi.org/10.4213/tmf471
  • https://www.mathnet.ru/eng/tmf/v127/i3/p432
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:367
    Full-text PDF :203
    References:81
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024