Abstract:
The classical theory of a nonrelativistic charged particle interacting with a U(1) gauge field is reformulated as the Schrцdinger wave equation modified by the de Broglie–Bohm nonlinear quantum potential. The model is gauge equivalent to the standard Schrödinger equation with the Planck constant ℏ for the deformed strength 1−ℏ2 of the quantum potential and to the pair of diffusion-antidiffusion equations for the strength 1+ℏ2. Specifying the gauge field as the Abelian Chern–Simons (CS) one in 2+1 dimensions interacting with the nonlinear Schrödinger (NLS) field (the Jackiw–Pi model), we represent the theory as a planar Madelung fluid, where the CS Gauss law has the simple physical meaning of creation of the local vorticity for the fluid flow. For the static flow when the velocity of the center-of-mass motion (the classical velocity) is equal to the quantum velocity (generated by the quantum potential velocity of the internal motion), the fluid admits an N-vortex solution. Applying a gauge transformation of the Auberson–Sabatier type to the phase of the vortex wave function, we show that deformation parameter ℏ, the CS coupling constant, and the quantum potential strength are quantized. We discuss reductions of the model to 1+1 dimensions leading to modified NLS and DNLS equations with resonance soliton interactions.
This publication is cited in the following 18 articles:
Muslum Ozisik, Aydin Secer, Mustafa Bayram, “On the investigation of chiral solitons via modified new Kudryashov method”, Int. J. Geom. Methods Mod. Phys., 20:07 (2023)
Jawad A., Arshad Z., “Thermal Consequences of a Regular Black Hole With Cosmological Constant and Einstein-Aether Black Hole”, Chin. J. Phys., 59 (2019), 546–555
Anacleto M.A., Salako I.G., Brito F.A., Passos E., “The Entropy of An Acoustic Black Hole in Neo-Newtonian Theory”, Int. J. Mod. Phys. A, 33:32 (2018), 1850185
Anacleto M.A., Brito F.A., Mohammadi A., Passos E., “Aharonov-Bohm Effect For a Fermion Field in a Planar Black Hole “Spacetime””, Eur. Phys. J. C, 77:4 (2017), 239
Salako I.G., Jawad A., “Superresonance phenomenon from acoustic black holes in neo-Newtonian theory”, Int. J. Mod. Phys. D, 25:5 (2016), 1650055
M. A. Anacleto, I. G. Salako, F. A. Brito, E. Passos, “Analogue Aharonov-Bohm effect in neo-Newtonian theory”, Phys. Rev. D, 92:12 (2015)
M.A. Anacleto, F.A. Brito, G.C. Luna, E. Passos, J. Spinelly, “Quantum-corrected finite entropy of noncommutative acoustic black holes”, Annals of Physics, 362 (2015), 436
Anacleto M.A., Brito F.A., Passos E., Santos W.P., “The Entropy of the Noncommutative Acoustic Black Hole Based on Generalized Uncertainty Principle”, Phys. Lett. B, 737 (2014), 6–11
Anacleto M.A., Brito F.A., Passos E., “Noncommutative Analogue Aharonov-Bohm Effect and Superresonance”, Phys. Rev. D, 87:12 (2013), 125015
Anacleto M.A., Brito F.A., Passos E., “Supersonic velocities in noncommutative acoustic black holes”, Phys Rev D, 85:2 (2012), 025013
Anacleto M.A., Brito F.A., Passos E., “Analogue Aharonov-Bohm Effect in a Lorentz-Violating Background”, Phys. Rev. D, 86:12 (2012), 125015
Lee J.-H. Pashaev O.K., “Chiral Resonant Solitons in Chern–Simons Theory and Broer-Kaup Type New Hydrodynamic Systems”, Chaos Solitons Fractals, 45:8 (2012), 1041–1047
Anacleto M.A., Brito F.A., Passos E., “Superresonance effect from a rotating acoustic black hole and Lorentz symmetry breaking”, Phys Lett B, 703:5 (2011), 609–613
Zhang Li-Chun, Li Huai-Fan, Zhao Ren, “Hawking radiation from a rotating acoustic black hole”, Phys Lett B, 698:5 (2011), 438–442
M.A. Anacleto, F.A. Brito, E. Passos, “Superresonance effect from a rotating acoustic black hole and Lorentz symmetry breaking”, Journal of End-to-End Testing, 52 (2011), 5
Anacleto M.A., Brito F.A., Passos E., “Acoustic black holes from Abelian Higgs model with Lorentz symmetry breaking”, Phys Lett B, 694:2 (2010), 149–157
Curtright, T, “Morphing quantum mechanics and fluid dynamics”, Journal of Physics A-Mathematical and General, 36:33 (2003), 8885
Pashaev, OK, “Resonance solitons as black holes in Madelung fluid”, Modern Physics Letters A, 17:24 (2002), 1601