Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2001, Volume 127, Number 3, Pages 432–443
DOI: https://doi.org/10.4213/tmf471
(Mi tmf471)
 

This article is cited in 18 scientific papers (total in 18 papers)

Self-Dual Vortices in Chern–Simons Hydrodynamics

J.-H. Leea, O. K. Pashaevbc

a Institute of Mathematics, Academia Sinica
b Joint Institute for Nuclear Research
c Izmir Institute of Technology
References:
Abstract: The classical theory of a nonrelativistic charged particle interacting with a U(1) gauge field is reformulated as the Schrцdinger wave equation modified by the de Broglie–Bohm nonlinear quantum potential. The model is gauge equivalent to the standard Schrödinger equation with the Planck constant for the deformed strength 12 of the quantum potential and to the pair of diffusion-antidiffusion equations for the strength 1+2. Specifying the gauge field as the Abelian Chern–Simons (CS) one in 2+1 dimensions interacting with the nonlinear Schrödinger (NLS) field (the Jackiw–Pi model), we represent the theory as a planar Madelung fluid, where the CS Gauss law has the simple physical meaning of creation of the local vorticity for the fluid flow. For the static flow when the velocity of the center-of-mass motion (the classical velocity) is equal to the quantum velocity (generated by the quantum potential velocity of the internal motion), the fluid admits an N-vortex solution. Applying a gauge transformation of the Auberson–Sabatier type to the phase of the vortex wave function, we show that deformation parameter , the CS coupling constant, and the quantum potential strength are quantized. We discuss reductions of the model to 1+1 dimensions leading to modified NLS and DNLS equations with resonance soliton interactions.
English version:
Theoretical and Mathematical Physics, 2001, Volume 127, Issue 3, Pages 779–788
DOI: https://doi.org/10.1023/A:1010451802189
Bibliographic databases:
Language: Russian
Citation: J.-H. Lee, O. K. Pashaev, “Self-Dual Vortices in Chern–Simons Hydrodynamics”, TMF, 127:3 (2001), 432–443; Theoret. and Math. Phys., 127:3 (2001), 779–788
Citation in format AMSBIB
\Bibitem{LeePas01}
\by J.-H.~Lee, O.~K.~Pashaev
\paper Self-Dual Vortices in Chern--Simons Hydrodynamics
\jour TMF
\yr 2001
\vol 127
\issue 3
\pages 432--443
\mathnet{http://mi.mathnet.ru/tmf471}
\crossref{https://doi.org/10.4213/tmf471}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1869965}
\zmath{https://zbmath.org/?q=an:0993.81006}
\transl
\jour Theoret. and Math. Phys.
\yr 2001
\vol 127
\issue 3
\pages 779--788
\crossref{https://doi.org/10.1023/A:1010451802189}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000170636700009}
Linking options:
  • https://www.mathnet.ru/eng/tmf471
  • https://doi.org/10.4213/tmf471
  • https://www.mathnet.ru/eng/tmf/v127/i3/p432
  • This publication is cited in the following 18 articles:
    1. Muslum Ozisik, Aydin Secer, Mustafa Bayram, “On the investigation of chiral solitons via modified new Kudryashov method”, Int. J. Geom. Methods Mod. Phys., 20:07 (2023)  crossref
    2. Jawad A., Arshad Z., “Thermal Consequences of a Regular Black Hole With Cosmological Constant and Einstein-Aether Black Hole”, Chin. J. Phys., 59 (2019), 546–555  crossref  mathscinet  isi  scopus
    3. Anacleto M.A., Salako I.G., Brito F.A., Passos E., “The Entropy of An Acoustic Black Hole in Neo-Newtonian Theory”, Int. J. Mod. Phys. A, 33:32 (2018), 1850185  crossref  mathscinet  zmath  isi  scopus
    4. Anacleto M.A., Brito F.A., Mohammadi A., Passos E., “Aharonov-Bohm Effect For a Fermion Field in a Planar Black Hole “Spacetime””, Eur. Phys. J. C, 77:4 (2017), 239  crossref  isi  scopus  scopus
    5. Salako I.G., Jawad A., “Superresonance phenomenon from acoustic black holes in neo-Newtonian theory”, Int. J. Mod. Phys. D, 25:5 (2016), 1650055  crossref  mathscinet  zmath  isi  elib  scopus
    6. M. A. Anacleto, I. G. Salako, F. A. Brito, E. Passos, “Analogue Aharonov-Bohm effect in neo-Newtonian theory”, Phys. Rev. D, 92:12 (2015)  crossref
    7. M.A. Anacleto, F.A. Brito, G.C. Luna, E. Passos, J. Spinelly, “Quantum-corrected finite entropy of noncommutative acoustic black holes”, Annals of Physics, 362 (2015), 436  crossref
    8. Anacleto M.A., Brito F.A., Passos E., Santos W.P., “The Entropy of the Noncommutative Acoustic Black Hole Based on Generalized Uncertainty Principle”, Phys. Lett. B, 737 (2014), 6–11  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    9. Anacleto M.A., Brito F.A., Passos E., “Noncommutative Analogue Aharonov-Bohm Effect and Superresonance”, Phys. Rev. D, 87:12 (2013), 125015  crossref  mathscinet  adsnasa  isi  elib  scopus  scopus
    10. Anacleto M.A., Brito F.A., Passos E., “Supersonic velocities in noncommutative acoustic black holes”, Phys Rev D, 85:2 (2012), 025013  crossref  adsnasa  isi  elib  scopus  scopus
    11. Anacleto M.A., Brito F.A., Passos E., “Analogue Aharonov-Bohm Effect in a Lorentz-Violating Background”, Phys. Rev. D, 86:12 (2012), 125015  crossref  mathscinet  adsnasa  isi  elib  scopus  scopus
    12. Lee J.-H. Pashaev O.K., “Chiral Resonant Solitons in Chern–Simons Theory and Broer-Kaup Type New Hydrodynamic Systems”, Chaos Solitons Fractals, 45:8 (2012), 1041–1047  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    13. Anacleto M.A., Brito F.A., Passos E., “Superresonance effect from a rotating acoustic black hole and Lorentz symmetry breaking”, Phys Lett B, 703:5 (2011), 609–613  crossref  mathscinet  adsnasa  isi  elib  scopus  scopus
    14. Zhang Li-Chun, Li Huai-Fan, Zhao Ren, “Hawking radiation from a rotating acoustic black hole”, Phys Lett B, 698:5 (2011), 438–442  crossref  mathscinet  adsnasa  isi  elib  scopus  scopus
    15. M.A. Anacleto, F.A. Brito, E. Passos, “Superresonance effect from a rotating acoustic black hole and Lorentz symmetry breaking”, Journal of End-to-End Testing, 52 (2011), 5  crossref
    16. Anacleto M.A., Brito F.A., Passos E., “Acoustic black holes from Abelian Higgs model with Lorentz symmetry breaking”, Phys Lett B, 694:2 (2010), 149–157  crossref  mathscinet  adsnasa  isi  elib  scopus  scopus
    17. Curtright, T, “Morphing quantum mechanics and fluid dynamics”, Journal of Physics A-Mathematical and General, 36:33 (2003), 8885  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    18. Pashaev, OK, “Resonance solitons as black holes in Madelung fluid”, Modern Physics Letters A, 17:24 (2002), 1601  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:395
    Full-text PDF :215
    References:94
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025