Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1985, Volume 62, Number 3, Pages 409–431 (Mi tmf4696)  

This article is cited in 16 scientific papers (total in 16 papers)

Reconstruction theorem for a quantum stochastic process

V. P. Belavkin
References:
Abstract: Statistically interpretable axioms are formulated that define a quantum stochastic process (QSP) as a causally ordered field in an arbitrary space-time localization region $T$ of an observable physical system. It is shown that to every QSP described in the weak sense by a self-consistent system of causally ordered correlation kernels there corresponds a unique, up to unitary equivalence, minimal QSP in the strong sense. It is shown that the proposed QSP construction, which reduces in the case of the linearly ordered :r  to the construction of the inductive limit of Lindblad's canonical representations [8], corresponds to Kolmogorov's classical reconstruction [12] if the order on $T=\mathbb Z$ is ignored and leads to Lewis construction [14] if one uses the system of all (not only causal) correlation kernels, regarding this system as lexicographically ordered on $\mathbb Z\times T$. The approach presented encompasses both nonrelativistic and relativistic irreversible dynamics of open quantum systems and fields satisfying the conditions of semigroup eovariance and local commutativity. Also given are necessary and sufficient conditions of dynamicity (conditional Markovness) and regularity, these leading to the properties of complete mixing (relaxation) and ergodicity of the QSP.
Received: 15.06.1981
Revised: 13.03.1984
English version:
Theoretical and Mathematical Physics, 1985, Volume 62, Issue 3, Pages 275–289
DOI: https://doi.org/10.1007/BF01018269
Bibliographic databases:
Language: Russian
Citation: V. P. Belavkin, “Reconstruction theorem for a quantum stochastic process”, TMF, 62:3 (1985), 409–431; Theoret. and Math. Phys., 62:3 (1985), 275–289
Citation in format AMSBIB
\Bibitem{Bel85}
\by V.~P.~Belavkin
\paper Reconstruction theorem for a~quantum stochastic process
\jour TMF
\yr 1985
\vol 62
\issue 3
\pages 409--431
\mathnet{http://mi.mathnet.ru/tmf4696}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=791208}
\transl
\jour Theoret. and Math. Phys.
\yr 1985
\vol 62
\issue 3
\pages 275--289
\crossref{https://doi.org/10.1007/BF01018269}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1985ASV1800009}
Linking options:
  • https://www.mathnet.ru/eng/tmf4696
  • https://www.mathnet.ru/eng/tmf/v62/i3/p409
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:355
    Full-text PDF :119
    References:51
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024