Abstract:
Influence of the nonaxial interaction between the quadrupoles on the order parameter
behaviour is investigated in the case of a random quadrupolar system. One of the
results is that in the random system of nonaxial quadrupoles the axial orientational
ordering takes place increasing monotonously with the cooling.
Citation:
E. A. Luchinskaya, E. E. Tareeva, “Model of quadrupole glass with nonaxial interaction”, TMF, 70:3 (1987), 477–480; Theoret. and Math. Phys., 70:3 (1987), 336–338
\Bibitem{LucTar87}
\by E.~A.~Luchinskaya, E.~E.~Tareeva
\paper Model of quadrupole glass with nonaxial interaction
\jour TMF
\yr 1987
\vol 70
\issue 3
\pages 477--480
\mathnet{http://mi.mathnet.ru/tmf4695}
\transl
\jour Theoret. and Math. Phys.
\yr 1987
\vol 70
\issue 3
\pages 336--338
\crossref{https://doi.org/10.1007/BF01041014}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1987K573300016}
Linking options:
https://www.mathnet.ru/eng/tmf4695
https://www.mathnet.ru/eng/tmf/v70/i3/p477
This publication is cited in the following 6 articles:
E. E. Tareeva, “Spherical analogues of some non-Ising spin glass models: Exact solutions”, Theoret. and Math. Phys., 168:3 (2011), 1358–1364
Gribova N.V., Schelkacheva T.I., Tareyeva E.E., “Potts spin glasses with three, four and five states near T = T-c: expanding around the replica symmetric solution”, Journal of Physics A-Mathematical and Theoretical, 43:49 (2010), 495006
E. A. Luchinskaya, E. E. Tareeva, “Spin glass with S=1”, Theoret. and Math. Phys., 90:2 (1992), 185–188
E. A. Luchinskaya, E. E. Tareeva, “Isotropic model of quadrupole glass. II. Breaking of replica symmetry”, Theoret. and Math. Phys., 91:1 (1992), 438–445
T. I. Shchelkacheva, “On theory of the orientational phase transition in quadrupolar systems of the KBr1-x(CN)x type”, Soviet Journal of Low Temperature Physics, 18:7 (1992), 529
E. A. Luchinskaya, E. E. Tareeva, “Isotropic model of quadrupole glass”, Theoret. and Math. Phys., 87:3 (1991), 669–673