Abstract:
Linearised non-uniform sine-Gordon equation describing the distribution of magnetic
flux in the semi-infinite Josephson junction with a micro-inhomogeneity is considered.
It is shown that the piecewise-linear approximation we use preserved some
properties of the initial nonlinear equation. Arising stable states are analysed in detail.
Part of them undergo bifurcations when the external magnetic field is changed.
Citation:
N. M. Atakishiyev, M. S. Pomerants, “Bound states of solitons in semi-infinite Josephson junctions with microscopic inhomogeneity”, TMF, 70:3 (1987), 351–357; Theoret. and Math. Phys., 70:3 (1987), 247–251
\Bibitem{AtaPom87}
\by N.~M.~Atakishiyev, M.~S.~Pomerants
\paper Bound states of solitons in semi-infinite Josephson junctions with microscopic inhomogeneity
\jour TMF
\yr 1987
\vol 70
\issue 3
\pages 351--357
\mathnet{http://mi.mathnet.ru/tmf4682}
\transl
\jour Theoret. and Math. Phys.
\yr 1987
\vol 70
\issue 3
\pages 247--251
\crossref{https://doi.org/10.1007/BF01041001}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1987K573300003}
Linking options:
https://www.mathnet.ru/eng/tmf4682
https://www.mathnet.ru/eng/tmf/v70/i3/p351
This publication is cited in the following 1 articles:
N. M. Atakishiyev, M. S. Pomerants, “Static states of fluxons in a weakly coupled system of Josephson junctions with microscopic inhomogeneity”, Theoret. and Math. Phys., 77:3 (1988), 1234–1238