Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1984, Volume 58, Number 3, Pages 461–472 (Mi tmf4678)  

This article is cited in 18 scientific papers (total in 18 papers)

Spectrum of the bloch electron in a magnetic field in a two-dimensional lattice

V. A. Geiler, V. A. Margulis
References:
Abstract: The Hamiltonian of an electron in a two-dimensional lattice of point potentials in a transverse magnetic field is considered. An expression is found for the Green's function of this Hamiltonian, and from it an equation that determines the dispersion laws Es(k) is obtained in the case of rational magnetic flux. A detailed investigation of the spectrum is made for the case of integral flux. A criterion is obtained for the conditions under which the Landau levels enter the spectrum of the lattice Hamiltonian.
Received: 15.04.1983
English version:
Theoretical and Mathematical Physics, 1984, Volume 58, Issue 3, Pages 302–310
DOI: https://doi.org/10.1007/BF01018053
Bibliographic databases:
Language: Russian
Citation: V. A. Geiler, V. A. Margulis, “Spectrum of the bloch electron in a magnetic field in a two-dimensional lattice”, TMF, 58:3 (1984), 461–472; Theoret. and Math. Phys., 58:3 (1984), 302–310
Citation in format AMSBIB
\Bibitem{GeiMar84}
\by V.~A.~Geiler, V.~A.~Margulis
\paper Spectrum of the bloch electron in a magnetic field in a two-dimensional lattice
\jour TMF
\yr 1984
\vol 58
\issue 3
\pages 461--472
\mathnet{http://mi.mathnet.ru/tmf4678}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=752077}
\transl
\jour Theoret. and Math. Phys.
\yr 1984
\vol 58
\issue 3
\pages 302--310
\crossref{https://doi.org/10.1007/BF01018053}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1984TJ86800013}
Linking options:
  • https://www.mathnet.ru/eng/tmf4678
  • https://www.mathnet.ru/eng/tmf/v58/i3/p461
  • This publication is cited in the following 18 articles:
    1. L. I. Danilov, “O spektre dvumernogo operatora Shredingera s odnorodnym magnitnym polem i periodicheskim elektricheskim potentsialom”, Izv. IMI UdGU, 51 (2018), 3–41  mathnet  crossref  elib
    2. S.H. Lee, C.W. Chiu, Y.H. Ho, M.F. Lin, “Uniaxial-stress effects on electronic structures of monolayer and bilayer graphenes”, Synthetic Metals, 160:23-24 (2010), 2435  crossref
    3. Tatsuya Nakajima, Hideo Aoki, “Landau quantization of graphene including diamagnetic shift and shrinkage of wave function”, Physica E: Low-dimensional Systems and Nanostructures, 40:5 (2008), 1354  crossref
    4. N. G. Galkin, V. A. Geyler, V. A. Margulis, “Quasiballistic electron transport in a three-dimensional microconstriction”, J. Exp. Theor. Phys., 91:1 (2000), 197  crossref
    5. Sergey Gredeskul, Masha Zusman, Yshai Avishai, Mark Ya. Azbel, The IMA Volumes in Mathematics and its Applications, 96, Wave Propagation in Complex Media, 1998, 95  crossref
    6. V. A. Geiler, V. A. Margulis, L. I. Filina, “Conductance of a quantum wire in a longitudinal magnetic field”, J. Exp. Theor. Phys., 86:4 (1998), 751  crossref
    7. V.A. Geyler, I.Yu. popov, “Eigenvalues imbedded in the band spectrum for a periodic array of quantum dots”, Reports on Mathematical Physics, 39:2 (1997), 275  crossref
    8. S.A. Gredeskul, M. Zusman, Y. Avishai, M.Ya. Azbel', “Spectral properties and localization of an electron in a two-dimensional system with point scatterers in a magnetic field”, Physics Reports, 288:1-6 (1997), 223  crossref
    9. V. A. Geiler, V. A. Margulis, “Point perturbation-invariant solutions of the Schrödinger equation with a magnetic field”, Math. Notes, 60:5 (1996), 575–580  mathnet  crossref  crossref  mathscinet  zmath  isi
    10. V. A. Geiler, I. Yu. Popov, “Ballistic transport in nanostructures: explicitly solvable models”, Theoret. and Math. Phys., 107:1 (1996), 427–434  mathnet  crossref  crossref  mathscinet  zmath  isi
    11. V. A. Geyler, B. S. Pavlov, I. Yu. Popov, “Spectral properties of a charged particle in antidot array: A limiting case of quantum billiard”, Journal of Mathematical Physics, 37:10 (1996), 5171  crossref
    12. A. Gramada, M. E. Raikh, “Short-range impurity in the vicinity of a saddle point and the levitation of the two-dimensional delocalized states in a magnetic field”, Phys. Rev. B, 54:3 (1996), 1928  crossref
    13. V. A. Geiler, V. V. Demidov, “Spectrum of three-dimensional landau operator perturbed by a periodic point potential”, Theoret. and Math. Phys., 103:2 (1995), 561–569  mathnet  crossref  mathscinet  zmath  isi
    14. M. Ya. Azbel', B. I. Halperin, “Landau levels in the presence of dilute short-range scatterers”, Phys. Rev. B, 52:19 (1995), 14098  crossref
    15. S. A. Gredeskul, M. Ya. Azbel', “Two-dimensional short-range scatterer in a magnetic field”, Phys. Rev. B, 49:4 (1994), 2323  crossref
    16. Y. Avishai, M. Ya. Azbel', S. A. Gredeskul, “Electron in a magnetic field interacting with point impurities”, Phys. Rev. B, 48:23 (1993), 17280  crossref
    17. V. A. Geiler, V. A. Margulis, “Anderson localization in the nondiscrete maryland model”, Theoret. and Math. Phys., 70:2 (1987), 133–140  mathnet  crossref  mathscinet  isi
    18. V. A. Geiler, V. A. Margulis, “Structure of the spectrum of a bloch electron in a magnetic field in a two-dimensional lattice”, Theoret. and Math. Phys., 61:1 (1984), 1049–1056  mathnet  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:503
    Full-text PDF :161
    References:83
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025