Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1987, Volume 70, Number 3, Pages 323–341 (Mi tmf4658)  

This article is cited in 133 scientific papers (total in 133 papers)

Inverse scattering method with variable spectral parameter

S. P. Burtsev, V. E. Zakharov, A. V. Mikhailov
References:
Abstract: In the traditional scheme of the inverse scattering method the spectral parameter of the auxiliary linear problem is usually considered as a constant. The authors propose to consider it as a variable satisfying an over-determined system of differential equations which is determined by the auxiliary linear problem. Nonlinear equations arising in this approach include, as a rule, the explicit dependence on coordinates. Besides the known equations (equation of gravitation, Heisenberg equation in axial geometry etc.) the method makes it possible to construct a number of new integrable equations valuable for applications.
Received: 06.02.1986
English version:
Theoretical and Mathematical Physics, 1987, Volume 70, Issue 3, Pages 227–240
DOI: https://doi.org/10.1007/BF01040999
Bibliographic databases:
Language: Russian
Citation: S. P. Burtsev, V. E. Zakharov, A. V. Mikhailov, “Inverse scattering method with variable spectral parameter”, TMF, 70:3 (1987), 323–341; Theoret. and Math. Phys., 70:3 (1987), 227–240
Citation in format AMSBIB
\Bibitem{BurZakMik87}
\by S.~P.~Burtsev, V.~E.~Zakharov, A.~V.~Mikhailov
\paper Inverse scattering method with variable spectral parameter
\jour TMF
\yr 1987
\vol 70
\issue 3
\pages 323--341
\mathnet{http://mi.mathnet.ru/tmf4658}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=894455}
\zmath{https://zbmath.org/?q=an:0639.35074}
\transl
\jour Theoret. and Math. Phys.
\yr 1987
\vol 70
\issue 3
\pages 227--240
\crossref{https://doi.org/10.1007/BF01040999}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1987K573300001}
Linking options:
  • https://www.mathnet.ru/eng/tmf4658
  • https://www.mathnet.ru/eng/tmf/v70/i3/p323
  • This publication is cited in the following 133 articles:
    1. Jing Zhang, Zhen Zheng, Hui Meng, Zenggui Wang, “Bifurcation analysis and exact solutions of the conformable time fractional Symmetric Regularized Long Wave equation”, Chaos, Solitons & Fractals, 190 (2025), 115744  crossref
    2. Artur Sergyeyev, “Multidimensional integrable systems from contact geometry”, Bol. Soc. Mat. Mex., 31:1 (2025)  crossref
    3. Alemu Yilma Tefera, Shangshuai Li, Da-jun Zhang, “Cauchy matrix approach to three non-isospectral nonlinear Schrödinger equations”, Commun. Theor. Phys., 76:5 (2024), 055001  crossref
    4. Haifeng Wang, Yufeng Zhang, “Generation of higher-dimensional isospectral-nonisospectral integrable hierarchies associated with a new class of higher-dimensional column-vector loop algebra”, Theoret. and Math. Phys., 219:2 (2024), 722–747  mathnet  crossref  crossref  mathscinet  adsnasa
    5. Alemu Yilma Tefera, Shangshuai Li, Da-jun Zhang, “Nonisospectral equations from the Cauchy matrix approach”, Reports on Mathematical Physics, 94:1 (2024), 47  crossref
    6. A. Inam, M. ul Hassan, “Quasi-Grammian soliton and kink dynamics of an M-component semidiscrete coupled integrable system”, Theoret. and Math. Phys., 221:1 (2024), 1650–1674  mathnet  crossref  crossref  mathscinet  adsnasa
    7. Jiajie Xie, Da-jun Zhang, Xuehui Zhao, “Rogue waves and nonzero background solutions for the Gross–Pitaevskii equation with a parabolic potential”, Phys. Scr., 99:11 (2024), 115216  crossref
    8. Jinxiu Li, Haifeng Wang, “A multicomponent generalized nonisospectral super AKNS integrable hierarchy”, Theoret. and Math. Phys., 221:3 (2024), 2083–2108  mathnet  crossref  crossref  adsnasa
    9. A. Inam, M. ul Hassan, “Exact solitons of an N-component discrete coupled integrable system”, Theoret. and Math. Phys., 214:1 (2023), 36–71  mathnet  crossref  crossref  mathscinet  adsnasa
    10. V. E. Adler, M. P. Kolesnikov, “Non-autonomous reductions of the KdV equation and multi-component analogs of the Painlevé equations P34 and P3”, Journal of Mathematical Physics, 64:10 (2023)  crossref
    11. Soloman Raju Thokala, Progress in Optical Science and Photonics, 22, Asymmetric Dual Core Waveguides, 2023, 1  crossref
    12. I.M. Mendez-Zuñiga, T.L. Belyaeva, M.A. Agüero, V.N. Serkin, “Emergence of polynomial external potentials in solitonic hierarchies: Applications to the nonisospectral LPDE model”, Optik, 287 (2023), 170904  crossref
    13. Soloman Raju Thokala, Progress in Optical Science and Photonics, 22, Asymmetric Dual Core Waveguides, 2023, 11  crossref
    14. V. E. Adler, M. P. Kolesnikov, “Non-Abelian Toda lattice and analogs of Painlevé III equation”, Journal of Mathematical Physics, 63:10 (2022)  crossref
    15. T. L. Belyaeva, V. N. Serkin, “Nonlinear dynamics of nonautonomous solitons in external potentials expressed by time-varying power series: exactly solvable higher-order nonlinear and dispersive models”, Nonlinear Dyn, 107:1 (2022), 1153  crossref
    16. Morozov I O., “Nonlinear Nonisospectral Differential Coverings For the Hyper-Cr Equation of Einstein?Weyl Structures and the Gibbons?Tsarev Equation”, Differ. Geom. Appl., 75 (2021), 101740  crossref  isi
    17. V. M. Zhuravlev, V. M. Morozov, “Predstavlenie Laksa s operatorami pervogo poryadka dlya novykh nelineinykh uravnenii tipa Kortevega - de Vriza”, Izvestiya vysshikh uchebnykh zavedenii. Povolzhskii region. Fiziko-matematicheskie nauki, 2021, no. 4, 178–191  mathnet  crossref
    18. Adler V.E., “Nonautonomous Symmetries of the Kdv Equation and Step-Like Solutions”, J. Nonlinear Math. Phys., 27:3 (2020), 478–493  crossref  isi
    19. Wei Feng, Song-Lin Zhao, “Soliton solutions to the nonlocal non-isospectral nonlinear Schrödinger equation”, Int. J. Mod. Phys. B, 34:25 (2020), 2050219  crossref
    20. Haifeng Wang, Yufeng Zhang, “Generating of Nonisospectral Integrable Hierarchies via the Lie-Algebraic Recursion Scheme”, Mathematics, 8:4 (2020), 621  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:896
    Full-text PDF :299
    References:94
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025