Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2001, Volume 127, Number 3, Pages 379–387
DOI: https://doi.org/10.4213/tmf465
(Mi tmf465)
 

This article is cited in 8 scientific papers (total in 8 papers)

Symmetries of the Discrete Nonlinear Schrödinger Equation

R. Hernandez Herederoa, D. Levib, P. Winternitzc

a Universidad Complutense, Departamento de Fisica Teorica II
b INFN — National Institute of Nuclear Physics
c Université de Montréal
Full-text PDF (208 kB) Citations (8)
References:
Abstract: The Lie algebra $L(h)$ of point symmetries of a discrete analogue of the nonlinear Schrödinger equation (NLS) is described. In the continuous limit, the discrete equation is transformed into the NLS, while the structure of the Lie algebra changes: a contraction occurs with the lattice spacing $h$ as the contraction parameter. A five-dimensional subspace of $L(h)$, generated by both point and generalized symmetries, transforms into the five-dimensional point symmetry algebra of the NLS.
English version:
Theoretical and Mathematical Physics, 2001, Volume 127, Issue 3, Pages 729–737
DOI: https://doi.org/10.1023/A:1010439432232
Bibliographic databases:
Language: Russian
Citation: R. Hernandez Heredero, D. Levi, P. Winternitz, “Symmetries of the Discrete Nonlinear Schrödinger Equation”, TMF, 127:3 (2001), 379–387; Theoret. and Math. Phys., 127:3 (2001), 729–737
Citation in format AMSBIB
\Bibitem{HerLevWin01}
\by R.~Hernandez Heredero, D.~Levi, P.~Winternitz
\paper Symmetries of the Discrete Nonlinear Schr\"odinger Equation
\jour TMF
\yr 2001
\vol 127
\issue 3
\pages 379--387
\mathnet{http://mi.mathnet.ru/tmf465}
\crossref{https://doi.org/10.4213/tmf465}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1869959}
\zmath{https://zbmath.org/?q=an:1002.39031}
\transl
\jour Theoret. and Math. Phys.
\yr 2001
\vol 127
\issue 3
\pages 729--737
\crossref{https://doi.org/10.1023/A:1010439432232}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000170636700003}
Linking options:
  • https://www.mathnet.ru/eng/tmf465
  • https://doi.org/10.4213/tmf465
  • https://www.mathnet.ru/eng/tmf/v127/i3/p379
  • This publication is cited in the following 8 articles:
    1. Fu W., Huang L., Tamizhmani K.M., Zhang D.-j., “Integrability Properties of the Differential-Difference Kadomtsev-Petviashvili Hierarchy and Continuum Limits”, Nonlinearity, 26:12 (2013), 3197–3229  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    2. Pavel Winternitz, Symmetries and Integrability of Difference Equations, 2011, 292  crossref
    3. Zhang D.-J., Chen Sh.-T., “Symmetries for the Ablowitz-Ladik Hierarchy: Part II. Integrable Discrete Nonlinear Schrodinger Equations and Discrete AKNS Hierarchy”, Stud Appl Math, 125:4 (2010), 419–443  crossref  mathscinet  zmath  isi  scopus  scopus
    4. Levi, D, “Continuous symmetries of difference equations”, Journal of Physics A-Mathematical and General, 39:2 (2006), R1  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    5. Winternitz P., “Symmetries of discrete systems”, Discrete Integrable Systems, Lecture Notes in Physics, 644, 2004, 185–243  crossref  mathscinet  zmath  adsnasa  isi
    6. Heredero, RH, “The discrete nonlinear Schrodinger equation and its lie symmetry reductions”, Journal of Nonlinear Mathematical Physics, 10 (2003), 77  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    7. Daniel Larsson, Sergei D. Silvestrov, “Burchnall-Chaundy Theory for q-Difference Operators and q-Deformed Heisenberg Algebras”, JNMP, 10:Supplement 2 (2003), 95  crossref
    8. Levi, D, “Lie symmetries of multidimensional difference equations”, Journal of Physics A-Mathematical and General, 34:44 (2001), 9507  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:554
    Full-text PDF :284
    References:66
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025