Abstract:
A local Hamiltonian is constructed for the nonlinear Schrödinger equation on a lattice in
both the classical and the quantum variants. This Hamiltonian is an explicit elementary
function of the local Bose fields. The lattice model possesses the same structure of
the action–angle variables as the continuous model.
Citation:
N. M. Bogolyubov, V. E. Korepin, “Quantum nonlinear Schrödinger equation on a lattice”, TMF, 66:3 (1986), 455–462; Theoret. and Math. Phys., 66:3 (1986), 300–305
This publication is cited in the following 7 articles:
N. A. Slavnov, “One-dimensional two-component Bose gas and the algebraic Bethe ansatz”, Theoret. and Math. Phys., 183:3 (2015), 800–821
Takeshi Oota, “Quantum projectors and local operators in lattice integrable models”, J. Phys. A: Math. Gen., 37:2 (2004), 441
A. GHOSE CHOUDHURY, A. ROY CHOWDHURY, “REDUCTION PROBLEM FOR FOUR WAVE INTERACTION AND THE CLASSICAL r MATRIX”, Int. J. Mod. Phys. A, 14:24 (1999), 3871
N. M. Bogoliubov, R. K. Bullough, G. D. Pang, “Exact solution of aq-boson hopping model”, Phys. Rev. B, 47:17 (1993), 11495
N.M. Bogoliubov, R.K. Bullough, “Completely integrable model of interacting q-bosons”, Physics Letters A, 168:4 (1992), 264
N M Bogoliubov, R K Bullough, “A q-deformed completely integrable Bose gas model”, J. Phys. A: Math. Gen., 25:14 (1992), 4057
N. M. Bogolyubov, A. G. Izergin, V. E. Korepin, “Critical exponents in completely integrable models of quantum statistical physics”, Theoret. and Math. Phys., 70:1 (1987), 94–102