Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1986, Volume 66, Number 3, Pages 430–444 (Mi tmf4639)  

This article is cited in 19 scientific papers (total in 19 papers)

Uniqueness and half-space nonuniqueness of gibbs states in Czech models

S. B. Shlosman
References:
Abstract: A study is made of a new class of interactions for which there is uniqueness of a Gibbs state in a whole space together with nonunlqueness of the state in a half-space. The method of reflection positivity is used to study these interactions.
Received: 14.12.1984
English version:
Theoretical and Mathematical Physics, 1986, Volume 66, Issue 3, Pages 284–293
DOI: https://doi.org/10.1007/BF01018227
Bibliographic databases:
Language: Russian
Citation: S. B. Shlosman, “Uniqueness and half-space nonuniqueness of gibbs states in Czech models”, TMF, 66:3 (1986), 430–444; Theoret. and Math. Phys., 66:3 (1986), 284–293
Citation in format AMSBIB
\Bibitem{Shl86}
\by S.~B.~Shlosman
\paper Uniqueness and half-space nonuniqueness of gibbs states in Czech models
\jour TMF
\yr 1986
\vol 66
\issue 3
\pages 430--444
\mathnet{http://mi.mathnet.ru/tmf4639}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=847435}
\transl
\jour Theoret. and Math. Phys.
\yr 1986
\vol 66
\issue 3
\pages 284--293
\crossref{https://doi.org/10.1007/BF01018227}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1986E586400010}
Linking options:
  • https://www.mathnet.ru/eng/tmf4639
  • https://www.mathnet.ru/eng/tmf/v66/i3/p430
  • This publication is cited in the following 19 articles:
    1. Abraham D. Newman Ch.M. Shlosman S., “A Continuum of Pure States in the Ising Model on a Halfplane”, J. Stat. Phys., 172:2, SI (2018), 611–626  crossref  isi
    2. P. Chleboun, A. Faggionato, F. Martinelli, C. Toninelli, “Mixing Length Scales of Low Temperature Spin Plaquettes Models”, J Stat Phys, 169:3 (2017), 441  crossref
    3. Michael J. Kastoryano, Fernando G. S. L. Brandão, “Quantum Gibbs Samplers: The Commuting Case”, Commun. Math. Phys., 344:3 (2016), 915  crossref
    4. S. Shlosman, “From the seminar on Mathematical Statistical Physics in Moscow State University, 1962–1994. Constructive criteria”, EPJ H, 37:4 (2012), 595  crossref
    5. Vadim Shcherbakov, Anatoly Yambartsev, “On Equilibrium Distribution of a Reversible Growth Model”, J Stat Phys, 148:1 (2012), 53  crossref
    6. Gibbs Measures and Phase Transitions, 2011, 495  crossref
    7. A. G. Basuev, “Ising model in half-space: A series of phase transitions in low magnetic fields”, Theoret. and Math. Phys., 153:2 (2007), 1539–1574  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    8. Emilio N. M. Cirillo, Enzo Olivieri, “Renormalization group at criticality and complete analyticity of constrained models: A numerical study”, J Stat Phys, 86:5-6 (1997), 1117  crossref
    9. Karl Haller, Tom Kennedy, “Absence of renormalization group pathologies near the critical temperature. Two examples”, J Stat Phys, 85:5-6 (1996), 607  crossref
    10. Etienne Laroche, “Hypercontractivité pour des systèmes de spins de portée infinie”, Probab. Th. Rel. Fields, 101:1 (1995), 89  crossref
    11. Roberto H. Schonmann, Senya B. Shlosman, “Complete analyticity for 2D Ising completed”, Commun.Math. Phys., 170:2 (1995), 453  crossref
    12. F. Martinelli, E. Olivieri, R. H. Schonmann, “For 2-D lattice spin systems weak mixing implies strong mixing”, Commun.Math. Phys., 165:1 (1994), 33  crossref
    13. F. Martinelli, E. Olivieri, “Approach to equilibrium of Glauber dynamics in the one phase region”, Commun.Math. Phys., 161:3 (1994), 447  crossref
    14. Aernout C. D. van Enter, Roberto Fernández, Alan D. Sokal, “Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory”, J Stat Phys, 72:5-6 (1993), 879  crossref
    15. Pavel Kotalík, “Non-unicity of Gibbs states of Czech models in a half-space”, Czech J Phys, 41:10 (1991), 891  crossref
    16. Christian Maes, Senya B. Shlosman, “Ergodicity of probabilistic cellular automata: A constructive criterion”, Commun.Math. Phys., 135:2 (1991), 233  crossref
    17. Gibbs Measures and Phase Transitions, 1988  crossref
    18. E. A. Pechersky, S. B. Shlosman, “Low-temperature phase transitions in systems with one ground state”, Theoret. and Math. Phys., 70:3 (1987), 325–330  mathnet  crossref  mathscinet  isi
    19. S. B. Shlosman, “Unusual analytic properties of some lattice models: Complement of Lee–Yang theory”, Theoret. and Math. Phys., 69:2 (1986), 1147–1150  mathnet  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:380
    Full-text PDF :128
    References:63
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025