Abstract:
A microscopic theory is used to construct the thermodynamics of quantum crystals,
and equations of motion of quantum crystals are obtained in the ideal (without
dissipation) case.
Citation:
N. M. Lavrinenko, S. V. Peletminskii, “Thermodynamics and equations of motion of quantum crystals”, TMF, 66:2 (1986), 314–325; Theoret. and Math. Phys., 66:2 (1986), 207–215
This publication is cited in the following 9 articles:
A. S. Peletminskii, S. V. Peletminskii, “Principle of stationary action in the theory of superfluid systems with spontaneously broken translational symmetry”, Theoret. and Math. Phys., 160:2 (2009), 1146–1160
Peletminskii, AS, “Classical and relativistic dynamics of supersolids: variational principle”, Journal of Physics A-Mathematical and Theoretical, 42:4 (2009), 045501
A.S. Peletminskii, “Hydrodynamic Lagrangian of relativistic superfluids with crystalline structure”, Physics Letters A, 373:37 (2009), 3369
Poluektov, YM, “Diatomic model of a quantum crystal”, Low Temperature Physics, 34:4–5 (2008), 368
A.S. Peletminskii, S.V. Peletminskii, “Phenomenological Lagrangian for nondissipative hydrodynamics of rotating superfluids”, Physics Letters A, 373:1 (2008), 160
Kovalevsky, MY, “Statistical mechanics of quantum fluids with triplet pairing”, Physics of Particles and Nuclei, 33:6 (2002), 684
Peletminsky, AS, “Variational principle in the spatially periodic Bose condensate theory”, Laser Physics, 12:1 (2002), 162
A. S. Peletminskii, S. V. Peletminskii, Yu. V. Slusarenko, “Theory of a spatially periodic Bose condensate in the weakly nonideal Bose gas model”, Theoret. and Math. Phys., 125:1 (2000), 1431–1453
A. A. Isaev, M. Yu. Kovalevskii, “Thermodynamics and equations of motion for quantum spin crystals”, Low Temperature Physics, 20:11 (1994), 884