Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1986, Volume 66, Number 2, Pages 253–263 (Mi tmf4621)  

This article is cited in 18 scientific papers (total in 18 papers)

Non-Markov theory of sudden modulation

A. I. Burshtein, A. A. Zharikov, S. I. Temkin
References:
Abstract: Kinetic equations are obtained for the averaged evolution operator of a quantum system whose Hamiltonian depends on a parameter that varies randomly in the time. It is assumed that the fluctuations of the parameter occur instantaneously, i.e., during the time of a “jump” that is appreciably shorter than the mean interval between jumps, when the parameter keeps a constant value. For an arbitrary distribution with respect to the times between jumps, the “noise” effect that modulates parametrically the system is not a Markov process. Nevertheless, one can find for the response of the system closed integrodifferential equations that contain as a special case the well-known results of the theory of sudden modulation for a homogeneous (Poisson) sequence of jumps in time. As an application, the reasons for oscillating behavior of the correlation functions of the dynamical variables in a dense medium are investigated.
Received: 19.12.1984
English version:
Theoretical and Mathematical Physics, 1986, Volume 66, Issue 2, Pages 166–173
DOI: https://doi.org/10.1007/BF01017769
Bibliographic databases:
Language: Russian
Citation: A. I. Burshtein, A. A. Zharikov, S. I. Temkin, “Non-Markov theory of sudden modulation”, TMF, 66:2 (1986), 253–263; Theoret. and Math. Phys., 66:2 (1986), 166–173
Citation in format AMSBIB
\Bibitem{BurZhaTem86}
\by A.~I.~Burshtein, A.~A.~Zharikov, S.~I.~Temkin
\paper Non-Markov theory of sudden modulation
\jour TMF
\yr 1986
\vol 66
\issue 2
\pages 253--263
\mathnet{http://mi.mathnet.ru/tmf4621}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=838279}
\transl
\jour Theoret. and Math. Phys.
\yr 1986
\vol 66
\issue 2
\pages 166--173
\crossref{https://doi.org/10.1007/BF01017769}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1986E417400010}
Linking options:
  • https://www.mathnet.ru/eng/tmf4621
  • https://www.mathnet.ru/eng/tmf/v66/i2/p253
  • This publication is cited in the following 18 articles:
    1. Martin Falcke, Victor Nicolai Friedhoff, “The stretch to stray on time: Resonant length of random walks in a transient”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 28:5 (2018)  crossref
    2. Helena Stage, Sergei Fedotov, “Non-linear continuous time random walk models”, Eur. Phys. J. B, 90:11 (2017)  crossref
    3. V. P. Shkilev, “Boundary conditions for the subdiffusion equation”, J. Exp. Theor. Phys., 116:4 (2013), 703  crossref
    4. Igor Goychuk, “Fractional-time random walk subdiffusion and anomalous transport with finite mean residence times: Faster, not slower”, Phys. Rev. E, 86:2 (2012)  crossref
    5. E. Heinsalu, M. Patriarca, I. Goychuk, P. Hänggi, “Fractional Fokker-Planck subdiffusion in alternating force fields”, Phys. Rev. E, 79:4 (2009)  crossref
    6. I.M. Sokolov, J. Klafter, “Continuous-time random walks in an oscillating field: Field-induced dispersion and the death of linear response”, Chaos, Solitons & Fractals, 34:1 (2007), 81  crossref
    7. I. M. Sokolov, M. G. W. Schmidt, F. Sagués, “Reaction-subdiffusion equations”, Phys. Rev. E, 73:3 (2006)  crossref
    8. Igor Goychuk, Peter Hänggi, “Quantum two-state dynamics driven by stationary non-Markovian discrete noise: Exact results”, Chemical Physics, 324:1 (2006), 160  crossref
    9. I. M. Sokolov, J. Klafter, “Field-Induced Dispersion in Subdiffusion”, Phys. Rev. Lett., 97:14 (2006)  crossref
    10. I. Goychuk, E. Heinsalu, M. Patriarca, G. Schmid, P. Hänggi, “Current and universal scaling in anomalous transport”, Phys. Rev. E, 73:2 (2006)  crossref
    11. I. M. Sokolov, “Linear response to perturbation of nonexponential renewal process: A generalized master equation approach”, Phys. Rev. E, 73:6 (2006)  crossref
    12. Igor Goychuk, Peter Hänggi, Jose L. Vega, Salvador Miret-Artés, “Non-Markovian stochastic resonance: Three-state model of ion channel gating”, Phys. Rev. E, 71:6 (2005)  crossref
    13. A V Chechkin, R Gorenflo, I M Sokolov, “Fractional diffusion in inhomogeneous media”, J. Phys. A: Math. Gen., 38:42 (2005), L679  crossref
    14. Igor Goychuk, “Rate processes with non-Markovian dynamical disorder”, The Journal of Chemical Physics, 122:16 (2005)  crossref
    15. Igor Goychuk, Peter Hänggi, “Quantum dynamics in strong fluctuating fields”, Advances in Physics, 54:6-7 (2005), 525  crossref
    16. Igor Goychuk, Peter Hänggi, “Fractional diffusion modeling of ion channel gating”, Phys. Rev. E, 70:5 (2004)  crossref
    17. Igor Goychuk, “Quantum dynamics with non-Markovian fluctuating parameters”, Phys. Rev. E, 70:1 (2004)  crossref
    18. A. A. Zharikov, S. I. Temkin, A. I. Burshtein, “Relaxation of the dynamic system induced by the parametric modulation of its hamiltonian by the functional of the Markov process”, Radiophys Quantum Electron, 33:6 (1990), 488  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:373
    Full-text PDF :151
    References:55
    First page:2
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025