Abstract:
The Schrödinger operator H=H0+V, is considered where V is an almost periodic potential of point interactions and the Hamiltonian H0 is subject to certain conditions satisfied, in particular, by two- and three-dimensional operators of the form H0=−Δ and H0=(i∇−A)2A being a vector-potential of a uniform magnetic field. It is proved that under certain conditions of incommensurability for V, non-degenerate localised states of the operator H are dense in forbidden bands of H0; the expressions for corresponding eigen-functions are found.
Citation:
V. A. Geiler, V. A. Margulis, “Anderson localization in the nondiscrete maryland model”, TMF, 70:2 (1987), 192–201; Theoret. and Math. Phys., 70:2 (1987), 133–140
\Bibitem{GeiMar87}
\by V.~A.~Geiler, V.~A.~Margulis
\paper Anderson localization in the nondiscrete maryland model
\jour TMF
\yr 1987
\vol 70
\issue 2
\pages 192--201
\mathnet{http://mi.mathnet.ru/tmf4611}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=894466}
\transl
\jour Theoret. and Math. Phys.
\yr 1987
\vol 70
\issue 2
\pages 133--140
\crossref{https://doi.org/10.1007/BF01039202}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1987K225600004}
Linking options:
https://www.mathnet.ru/eng/tmf4611
https://www.mathnet.ru/eng/tmf/v70/i2/p192
This publication is cited in the following 13 articles:
E. N. Grishanov, I. Y. Popov, “Solvable model of moire superlattice in a magnetic field”, Indian J Phys, 2024
E. N. Grishanov, I. Y. Popov, “Spectral Properties of Graphene with Periodic Array of Defects in a Magnetic Field”, Russ. J. Math. Phys., 25:3 (2018), 277
E.N. Grishanov, I.Yu. Popov, “Spectral properties of multi-layered graphene in a magnetic field”, Superlattices and Microstructures, 86 (2015), 68
Konstantin Pankrashkin, “Quasiperiodic surface Maryland models on quantum graphs”, J. Phys. A: Math. Theor., 42:26 (2009), 265304
Frédéric Klopp, Konstantin Pankrashkin, “Localization on Quantum Graphs with Random Vertex Couplings”, J Stat Phys, 131:4 (2008), 651
JOCHEN BRÜNING, VLADIMIR GEYLER, KONSTANTIN PANKRASHKIN, “SPECTRA OF SELF-ADJOINT EXTENSIONS AND APPLICATIONS TO SOLVABLE SCHRÖDINGER OPERATORS”, Rev. Math. Phys., 20:01 (2008), 1
Konstantin Pankrashkin, “Localization effects in a periodic quantum graph with magnetic field and spin-orbit interaction”, Journal of Mathematical Physics, 47:11 (2006)
Jochen Brüning, Vladimir Geyler, Konstantin Pankrashkin, “Cantor and Band Spectra for Periodic Quantum Graphs with Magnetic Fields”, Commun. Math. Phys., 269:1 (2006), 87
Konstantin Pankrashkin, “Resolvents of self-adjoint extensions with mixed boundary conditions”, Reports on Mathematical Physics, 58:2 (2006), 207
J. Brüning, V. V. Demidov, V. A. Geyler, “Hofstadter-type spectral diagrams for the Bloch electron in three dimensions”, Phys. Rev. B, 69:3 (2004)
Albeverio, S, “The band structure of the general periodic Schrodinger operator with point interactions”, Communications in Mathematical Physics, 210:1 (2000), 29
S.A. Gredeskul, M. Zusman, Y. Avishai, M.Ya. Azbel', “Spectral properties and localization of an electron in a two-dimensional system with point scatterers in a magnetic field”, Physics Reports, 288:1-6 (1997), 223
V. A. Geiler, V. V. Demidov, “Spectrum of three-dimensional landau operator perturbed by a periodic point potential”, Theoret. and Math. Phys., 103:2 (1995), 561–569