Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1987, Volume 70, Number 2, Pages 192–201 (Mi tmf4611)  

This article is cited in 13 scientific papers (total in 13 papers)

Anderson localization in the nondiscrete maryland model

V. A. Geiler, V. A. Margulis
References:
Abstract: The Schrödinger operator H=H0+V, is considered where V is an almost periodic potential of point interactions and the Hamiltonian H0 is subject to certain conditions satisfied, in particular, by two- and three-dimensional operators of the form H0=Δ and H0=(iA)2 A being a vector-potential of a uniform magnetic field. It is proved that under certain conditions of incommensurability for V, non-degenerate localised states of the operator H are dense in forbidden bands of H0; the expressions for corresponding eigen-functions are found.
Received: 16.10.1985
English version:
Theoretical and Mathematical Physics, 1987, Volume 70, Issue 2, Pages 133–140
DOI: https://doi.org/10.1007/BF01039202
Bibliographic databases:
Language: Russian
Citation: V. A. Geiler, V. A. Margulis, “Anderson localization in the nondiscrete maryland model”, TMF, 70:2 (1987), 192–201; Theoret. and Math. Phys., 70:2 (1987), 133–140
Citation in format AMSBIB
\Bibitem{GeiMar87}
\by V.~A.~Geiler, V.~A.~Margulis
\paper Anderson localization in the nondiscrete maryland model
\jour TMF
\yr 1987
\vol 70
\issue 2
\pages 192--201
\mathnet{http://mi.mathnet.ru/tmf4611}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=894466}
\transl
\jour Theoret. and Math. Phys.
\yr 1987
\vol 70
\issue 2
\pages 133--140
\crossref{https://doi.org/10.1007/BF01039202}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1987K225600004}
Linking options:
  • https://www.mathnet.ru/eng/tmf4611
  • https://www.mathnet.ru/eng/tmf/v70/i2/p192
  • This publication is cited in the following 13 articles:
    1. E. N. Grishanov, I. Y. Popov, “Solvable model of moire superlattice in a magnetic field”, Indian J Phys, 2024  crossref
    2. E. N. Grishanov, I. Y. Popov, “Spectral Properties of Graphene with Periodic Array of Defects in a Magnetic Field”, Russ. J. Math. Phys., 25:3 (2018), 277  crossref
    3. E.N. Grishanov, I.Yu. Popov, “Spectral properties of multi-layered graphene in a magnetic field”, Superlattices and Microstructures, 86 (2015), 68  crossref
    4. Konstantin Pankrashkin, “Quasiperiodic surface Maryland models on quantum graphs”, J. Phys. A: Math. Theor., 42:26 (2009), 265304  crossref
    5. Frédéric Klopp, Konstantin Pankrashkin, “Localization on Quantum Graphs with Random Vertex Couplings”, J Stat Phys, 131:4 (2008), 651  crossref
    6. JOCHEN BRÜNING, VLADIMIR GEYLER, KONSTANTIN PANKRASHKIN, “SPECTRA OF SELF-ADJOINT EXTENSIONS AND APPLICATIONS TO SOLVABLE SCHRÖDINGER OPERATORS”, Rev. Math. Phys., 20:01 (2008), 1  crossref
    7. Konstantin Pankrashkin, “Localization effects in a periodic quantum graph with magnetic field and spin-orbit interaction”, Journal of Mathematical Physics, 47:11 (2006)  crossref
    8. Jochen Brüning, Vladimir Geyler, Konstantin Pankrashkin, “Cantor and Band Spectra for Periodic Quantum Graphs with Magnetic Fields”, Commun. Math. Phys., 269:1 (2006), 87  crossref
    9. Konstantin Pankrashkin, “Resolvents of self-adjoint extensions with mixed boundary conditions”, Reports on Mathematical Physics, 58:2 (2006), 207  crossref
    10. J. Brüning, V. V. Demidov, V. A. Geyler, “Hofstadter-type spectral diagrams for the Bloch electron in three dimensions”, Phys. Rev. B, 69:3 (2004)  crossref
    11. Albeverio, S, “The band structure of the general periodic Schrodinger operator with point interactions”, Communications in Mathematical Physics, 210:1 (2000), 29  crossref  isi
    12. S.A. Gredeskul, M. Zusman, Y. Avishai, M.Ya. Azbel', “Spectral properties and localization of an electron in a two-dimensional system with point scatterers in a magnetic field”, Physics Reports, 288:1-6 (1997), 223  crossref
    13. V. A. Geiler, V. V. Demidov, “Spectrum of three-dimensional landau operator perturbed by a periodic point potential”, Theoret. and Math. Phys., 103:2 (1995), 561–569  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:357
    Full-text PDF :122
    References:59
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025