Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2004, Volume 139, Number 1, Pages 112–128
DOI: https://doi.org/10.4213/tmf46
(Mi tmf46)
 

Quasifree States in Some One-Dimensional Quantum Spin Models

Yu. G. Stroganov

Institute for High Energy Physics
References:
Abstract: We use numerical methods to investigate the $SU_q(N)$ Perk–Schultz spin chain at the special quantum parameter value $q=-e^{i\pi/N}$. We discover simple laws applicable to a considerable part of the Hamiltonian spectrum, which in particular contains the energy of the ground state and the nearest excitations. The phenomenological formulas obtained resemble formulas for the spectrum of the free-fermion model. We formulate several hypotheses, some of which can be justified by constructing exact solutions of the system of Bethe-ansatz equations for finite-length chains. We obtain two sets of solutions of these equations. The first corresponds to the special value of the quantum parameter $q$ and, in particular, describes the model ground state, which is antiferromagnetic. The second set of solutions describes a part of the spectrum belonging to the sectors where the numbers $n_i$ of particles of different types ($i=0,1,\dots,N-1$) do not exceed unity for all the types except one. For this set, we obtain a simple spectrum at arbitrary values of $q$. It is hypothesized that this spectrum and the solutions of the Bethe-ansatz equations found in a closed form are intimately related to the existence of a special eigenstate for the transfer matrix of the auxiliary inhomogeneous $SU_q(N-1)$ vertex model that is involved in constructing the system of Bethe-ansatz equations of a matrioshka structure. Indirect arguments based on combinatorial properties of the wave function of the relevant state are given to support this hypothesis.
Keywords: Perk–Schultz model, finite spin chains, exact solution of Bethe, nsatz equations.
English version:
Theoretical and Mathematical Physics, 2004, Volume 139, Issue 1, Pages 542–556
DOI: https://doi.org/10.1023/B:TAMP.0000022746.81620.65
Bibliographic databases:
Language: Russian
Citation: Yu. G. Stroganov, “Quasifree States in Some One-Dimensional Quantum Spin Models”, TMF, 139:1 (2004), 112–128; Theoret. and Math. Phys., 139:1 (2004), 542–556
Citation in format AMSBIB
\Bibitem{Str04}
\by Yu.~G.~Stroganov
\paper Quasifree States in Some One-Dimensional Quantum Spin Models
\jour TMF
\yr 2004
\vol 139
\issue 1
\pages 112--128
\mathnet{http://mi.mathnet.ru/tmf46}
\crossref{https://doi.org/10.4213/tmf46}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2076913}
\zmath{https://zbmath.org/?q=an:1178.82034}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2004TMP...139..542S}
\transl
\jour Theoret. and Math. Phys.
\yr 2004
\vol 139
\issue 1
\pages 542--556
\crossref{https://doi.org/10.1023/B:TAMP.0000022746.81620.65}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000221534000009}
Linking options:
  • https://www.mathnet.ru/eng/tmf46
  • https://doi.org/10.4213/tmf46
  • https://www.mathnet.ru/eng/tmf/v139/i1/p112
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:372
    Full-text PDF :197
    References:63
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024