Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1969, Volume 1, Number 3, Pages 329–336 (Mi tmf4581)  

This article is cited in 17 scientific papers (total in 17 papers)

Asymptotic states in the quantum field theory

D. A. Slavnov
References:
Abstract: The asymptotic in- and out-states are constructed within the framework of the S-matrix approach to the quantum field theory. The basic quantities in this approach are not the Heisenberg fields but the S-matrix, which depends on the intensity of switching on interaction.
Received: 19.06.1969
English version:
Theoretical and Mathematical Physics, 1969, Volume 1, Issue 3, Pages 251–256
DOI: https://doi.org/10.1007/BF01035739
Bibliographic databases:
Language: Russian
Citation: D. A. Slavnov, “Asymptotic states in the quantum field theory”, TMF, 1:3 (1969), 329–336; Theoret. and Math. Phys., 1:3 (1969), 251–256
Citation in format AMSBIB
\Bibitem{Sla69}
\by D.~A.~Slavnov
\paper Asymptotic states in the quantum field theory
\jour TMF
\yr 1969
\vol 1
\issue 3
\pages 329--336
\mathnet{http://mi.mathnet.ru/tmf4581}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=464994}
\transl
\jour Theoret. and Math. Phys.
\yr 1969
\vol 1
\issue 3
\pages 251--256
\crossref{https://doi.org/10.1007/BF01035739}
Linking options:
  • https://www.mathnet.ru/eng/tmf4581
  • https://www.mathnet.ru/eng/tmf/v1/i3/p329
  • This publication is cited in the following 17 articles:
    1. Paul-Hermann Balduf, Springer Theses, Dyson–Schwinger Equations, Renormalization Conditions, and the Hopf Algebra of Perturbative Quantum Field Theory, 2024, 1  crossref
    2. Manjavidze, J, “Very high multiplicity hadron processes”, Physics Reports-Review Section of Physics Letters, 346:1 (2001), 2  isi
    3. N. S. Gonchar, A. B. Rudyk, “Oscillation of the radial distribution function”, J Stat Phys, 68:5-6 (1992), 1065  crossref
    4. N.S. Gonchar, A.B. Rudyk, “Oscillation of the radial distribution function and singularity of the approximate equation of state for the hard sphere model”, Physics Letters A, 150:5-7 (1990), 246  crossref
    5. Janusz Szczepański, “On the basis of statistical mechanics. The Liouville equation for systems with an infinite countable number of degrees of freedom”, Physica A: Statistical Mechanics and its Applications, 157:2 (1989), 955  crossref
    6. N.S. Gonchar, “Correlation functions of some continuous model systems and description of phase transitions”, Physics Reports, 172:5 (1989), 175  crossref
    7. N.S. Gonchar, A.B. Rudyk, “An approximate equation for the radial distribution function in the hard sphere model”, Physics Letters A, 124:8 (1987), 399  crossref
    8. N.S. Gonchar, A.B. Rudyk, “Equation of state for the hard sphere model in the third virial coefficient approximation”, Physics Letters A, 124:8 (1987), 392  crossref
    9. N.S. Gonchar, “A new set of equations for correlation functions and its solution in the infinite volume limit”, Physics Letters A, 102:7 (1984), 285  crossref
    10. V.A. Zagrebnov, “On the solutions of correlation equations for classical continuous systems”, Physica A: Statistical Mechanics and its Applications, 109:3 (1981), 403  crossref
    11. O Penrose, “Foundations of statistical mechanics”, Rep. Prog. Phys., 42:12 (1979), 1937  crossref
    12. M. Chaichian, M. Hayashi, N. F. Nelipa, A. E. Pukhov, “On the problem of existence of quantum field theory”, Journal of Mathematical Physics, 20:8 (1979), 1783  crossref
    13. K. S. Matviichuk, “Mathematical description of the states of bose and fermi systems by the method of partial density matrices of the canonical ensemble”, Theoret. and Math. Phys., 41:3 (1979), 1067–1079  mathnet  mathnet  crossref  isi
    14. V. A. Zagrebnov, L. A. Pastur, “Singular interaction potentials in classical statistical mechanics”, Theoret. and Math. Phys., 36:3 (1978), 784–797  mathnet  mathnet  crossref
    15. R. L. Dobrushin, Brunello Tirozzi, “The central limit theorem and the problem of equivalence of ensembles”, Commun.Math. Phys., 54:2 (1977), 173  crossref
    16. V.P. Vstovsky, “Projection formalism in the kinetic theory”, Physica A: Statistical Mechanics and its Applications, 83:3 (1976), 454  crossref
    17. F. A. Berezin, “Relationships between the correlation functions in classical statistical physics”, Theoret. and Math. Phys., 3:1 (1971), 386–394  mathnet  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:436
    Full-text PDF :190
    References:54
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025