Abstract:
The spectrum of the molecular electron energy operator $H$ is investigated for the case of
molecules with fixed nuclei situated such that transformations of the point group $G$ carry
identical nuclei into each other. On the spaces of electron wavefuuctions corresponding to
the product of irreducible representations of the permutation groups $S_n$ and $G$, the limiting spectrum $H$ is found, and the existence of an infinite number of points of the discrete spectrum is proved for neutral molecules and for positive molecular ions.
Citation:
G. M. Zhislin, E. L. Mandel', “Spectrum of molecular electron energy operators in spaces of functions of specified symmetry”, TMF, 1:2 (1969), 295–302; Theoret. and Math. Phys., 1:2 (1969), 227–232
\Bibitem{ZhiMan69}
\by G.~M.~Zhislin, E.~L.~Mandel'
\paper Spectrum of molecular electron energy operators in spaces of functions of specified symmetry
\jour TMF
\yr 1969
\vol 1
\issue 2
\pages 295--302
\mathnet{http://mi.mathnet.ru/tmf4577}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=462279}
\transl
\jour Theoret. and Math. Phys.
\yr 1969
\vol 1
\issue 2
\pages 227--232
\crossref{https://doi.org/10.1007/BF01028050}
Linking options:
https://www.mathnet.ru/eng/tmf4577
https://www.mathnet.ru/eng/tmf/v1/i2/p295
This publication is cited in the following 3 articles:
G. M. Zhislin, “Spectra of Hamiltonians of Molecule Pseudorelativistic Electrons in Spaces of Functions with Permutational and Point Symmetry”, Funct. Anal. Appl., 40:2 (2006), 134–138
A. A. Lokshin, “The Many-Electron Schrödinger Operator and the Rotation-Vibration Potential of Polyatomic Molecules”, Funct. Anal. Appl., 33:1 (1999), 61–63
G. M. Zhislin, “On the finiteness of the discrete spectrum of the energy operator of negative atomic and molecular ions”, Theoret. and Math. Phys., 7:3 (1971), 571–578