Abstract:
The validity of the generalization of Feynman's variational inequality in polaron theory
to the case of an arbitrary nonvanishing constant magnetic field is investigated. It is
shown that when an anisotropic trial quadratic action is used this generalization is not
valid. For the linear polaron model in the case of isotropic trial quadratic action the
validity of the Feyuman variational inequality is proved for all temperatures, coupling
constants, and magnetic fields.
Citation:
S. N. Gorshkov, A. V. Zabrodin, C. Rodriguez, V. K. Fedyanin, “Feynman's variational principle for a polaron in a magnetic field”, TMF, 62:2 (1985), 304–311; Theoret. and Math. Phys., 62:2 (1985), 205–210
This publication is cited in the following 4 articles:
Wilson B. da Costa, François M. Peeters, “Phase diagram for large two-dimensional bipolarons in a magnetic field”, Phys. Rev. B, 57:17 (1998), 10569
E. A. Kochetov, H. Leschke, M. A. Smondyrev, “Diagrammatic weak-coupling expansion for the magneto-polaron energy”, Z. Physik B - Condensed Matter, 89:2 (1992), 177
B. Gerlach, H. Löwen, “Analytical properties of polaron systems or: Do polaronic phase transitions exist or not?”, Rev. Mod. Phys., 63:1 (1991), 63
H. Löwen, “Spectral properties of an optical polaron in a magnetic field”, Journal of Mathematical Physics, 29:6 (1988), 1498