Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2001, Volume 127, Number 2, Pages 268–283
DOI: https://doi.org/10.4213/tmf457
(Mi tmf457)
 

This article is cited in 5 scientific papers (total in 5 papers)

Wick Power Series Converging to Nonlocal Fields

A. G. Smirnov, M. A. Soloviev

P. N. Lebedev Physical Institute, Russian Academy of Sciences
Full-text PDF (311 kB) Citations (5)
References:
Abstract: We consider the infinite series in Wick powers of a generalized free field that are convergent under smoothing with analytic test functions and realize a nonlocal extension of the Borchers equivalence classes. The nonlocal fields to which the Wick power series converge are proved to be asymptotically commuting. This property serves as a natural generalization of the relative locality of the Wick polynomials. The proposed proof is based on exploiting the analytic properties of the vacuum expectation values in the x space and applying the Cauchy–Poincaré theorem.
Received: 17.01.2001
English version:
Theoretical and Mathematical Physics, 2001, Volume 127, Issue 2, Pages 632–645
DOI: https://doi.org/10.1023/A:1010497519684
Bibliographic databases:
Language: Russian
Citation: A. G. Smirnov, M. A. Soloviev, “Wick Power Series Converging to Nonlocal Fields”, TMF, 127:2 (2001), 268–283; Theoret. and Math. Phys., 127:2 (2001), 632–645
Citation in format AMSBIB
\Bibitem{SmiSol01}
\by A.~G.~Smirnov, M.~A.~Soloviev
\paper Wick Power Series Converging to Nonlocal Fields
\jour TMF
\yr 2001
\vol 127
\issue 2
\pages 268--283
\mathnet{http://mi.mathnet.ru/tmf457}
\crossref{https://doi.org/10.4213/tmf457}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1863563}
\zmath{https://zbmath.org/?q=an:1024.81027}
\transl
\jour Theoret. and Math. Phys.
\yr 2001
\vol 127
\issue 2
\pages 632--645
\crossref{https://doi.org/10.1023/A:1010497519684}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000170547800003}
Linking options:
  • https://www.mathnet.ru/eng/tmf457
  • https://doi.org/10.4213/tmf457
  • https://www.mathnet.ru/eng/tmf/v127/i2/p268
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:319
    Full-text PDF :182
    References:53
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024