Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1969, Volume 1, Number 2, Pages 187–199 (Mi tmf4560)  

This article is cited in 21 scientific papers (total in 21 papers)

Wightman formulation for nonlocalizable field theories II. Theory of asymptotic fields and particles

M. Z. Iofa, V. Ya. Fainberg
References:
Abstract: It is shown that in nonlocalizable and, as a consequence, nonmicrocausal field theories in which the Wightman functions grow exponentially in momentum space and satisfy a quasilocality condition one can construct a theory of asymptotic fields and particles, i.e., prove the existence of a unitary PCT-invariant S-matrix.
Received: 18.04.1969
English version:
Theoretical and Mathematical Physics, 1969, Volume 1, Issue 2, Pages 143–152
DOI: https://doi.org/10.1007/BF01028040
Bibliographic databases:
Language: Russian
Citation: M. Z. Iofa, V. Ya. Fainberg, “Wightman formulation for nonlocalizable field theories II. Theory of asymptotic fields and particles”, TMF, 1:2 (1969), 187–199; Theoret. and Math. Phys., 1:2 (1969), 143–152
Citation in format AMSBIB
\Bibitem{IofFai69}
\by M.~Z.~Iofa, V.~Ya.~Fainberg
\paper Wightman formulation for nonlocalizable field theories
II.~Theory of asymptotic fields and particles
\jour TMF
\yr 1969
\vol 1
\issue 2
\pages 187--199
\mathnet{http://mi.mathnet.ru/tmf4560}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=468739}
\transl
\jour Theoret. and Math. Phys.
\yr 1969
\vol 1
\issue 2
\pages 143--152
\crossref{https://doi.org/10.1007/BF01028040}
Linking options:
  • https://www.mathnet.ru/eng/tmf4560
  • https://www.mathnet.ru/eng/tmf/v1/i2/p187
  • This publication is cited in the following 21 articles:
    1. Luca Buoninfante, Junsei Tokuda, Masahide Yamaguchi, “New lower bounds on scattering amplitudes: non-locality constraints”, J. High Energ. Phys., 2024:1 (2024)  crossref
    2. Tokuda J., “Extension of Positivity Bounds to Non-Local Theories: Ir Obstructions to Lorentz Invariant Uv Completions”, J. High Energy Phys., 2019, no. 5, 216  crossref  isi
    3. Valentin V. Khoze, Michael Spannowsky, “Consistency of Higgsplosion in localizable QFT”, Physics Letters B, 790 (2019), 466  crossref
    4. Yongwan Gim, Hwajin Um, Wontae Kim, “Unruh effect of nonlocal field theories with a minimal length”, Physics Letters B, 784 (2018), 206  crossref
    5. Calcagni G., “Cosmology of Quantum Gravities”: G. Calcagni, Classical and Quantum Cosmology, Graduate Texts in Physics, Springer International Publishing Ag, 2017, 543–624  crossref  isi
    6. Syed Masood, Mir Faizal, Zaid Zaz, Ahmed Farag Ali, Jamil Raza, Mushtaq B. Shah, “The most general form of deformation of the Heisenberg algebra from the generalized uncertainty principle”, Physics Letters B, 763 (2016), 218  crossref
    7. Tomboulis E.T., “Nonlocal and Quasilocal Field Theories”, Phys. Rev. D, 92:12 (2015), 125037  crossref  isi
    8. Soloviev M.A., “Reconstruction in quantum field theory with a fundamental length”, J Math Phys, 51:9 (2010), 093520  crossref  isi
    9. Soloviev, MA, “Quantum field theory with a fundamental length: A general mathematical framework”, Journal of Mathematical Physics, 50:12 (2009), 123519  crossref  isi
    10. Efimov, GV, “Blokhintsev and nonlocal quantum field theory”, Physics of Particles and Nuclei, 35:5 (2004), 598  isi
    11. G. V. Efimov, “Amplitudes in Nonlocal Theories at High Energies”, Theoret. and Math. Phys., 128:3 (2001), 1169–1175  mathnet  crossref  crossref  mathscinet  zmath  isi
    12. M. A. Soloviev, “Lorentz-Covariant Ultradistributions, Hyperfunctions, and Analytic Functionals”, Theoret. and Math. Phys., 128:3 (2001), 1252–1270  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    13. Theoret. and Math. Phys., 93:3 (1992), 1438–1449  mathnet  crossref  mathscinet  zmath  isi
    14. M. A. Soloviev, “Spacelike asymptotic behavior of vacuum expectation values in nonlocal field theory”, Theoret. and Math. Phys., 52:3 (1982), 854–862  mathnet  crossref  mathscinet  isi
    15. V.Ya Fainberg, M.A Soloviev, “How can local properties be described in field theories without strict locality?”, Annals of Physics, 113:2 (1978), 421  crossref
    16. G. D. Romanko, I. V. Khimich, “Fourier transformation of a class of hyperfunctions and formulation of the condition of local commutativity in the framework of localizable quantum field theory in terms of hyperfunctions”, Theoret. and Math. Phys., 23:2 (1975), 451–461  mathnet  crossref  mathscinet  zmath
    17. Yu.M. Lomsadze, B.A. Agranovsky, E.P. Sabad, “Dispersion relations with damping function”, Nuclear Physics B, 73:3 (1974), 536  crossref
    18. M. A. Soloviev, “On the Fourier–Laplace transformation of generalized functions”, Theoret. and Math. Phys., 15:1 (1973), 317–328  mathnet  crossref  mathscinet
    19. Z. Horváth, G. Pócsik, “High-energy summation of ladder diagrams in nonpolynomial field theories”, Annals of Physics, 74:2 (1972), 555  crossref
    20. M. A. Soloviev, “On the class of distributions compatible with locality”, Theoret. and Math. Phys., 7:2 (1971), 458–464  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:374
    Full-text PDF :148
    References:45
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025