Abstract:
It is shown that in nonlocalizable and, as a consequence, nonmicrocausal field theories in
which the Wightman functions grow exponentially in momentum space and satisfy a quasilocality
condition one can construct a theory of asymptotic fields and particles, i.e., prove the existence of a unitary PCT-invariant S-matrix.
Citation:
M. Z. Iofa, V. Ya. Fainberg, “Wightman formulation for nonlocalizable field theories
II. Theory of asymptotic fields and particles”, TMF, 1:2 (1969), 187–199; Theoret. and Math. Phys., 1:2 (1969), 143–152
\Bibitem{IofFai69}
\by M.~Z.~Iofa, V.~Ya.~Fainberg
\paper Wightman formulation for nonlocalizable field theories
II.~Theory of asymptotic fields and particles
\jour TMF
\yr 1969
\vol 1
\issue 2
\pages 187--199
\mathnet{http://mi.mathnet.ru/tmf4560}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=468739}
\transl
\jour Theoret. and Math. Phys.
\yr 1969
\vol 1
\issue 2
\pages 143--152
\crossref{https://doi.org/10.1007/BF01028040}
Linking options:
https://www.mathnet.ru/eng/tmf4560
https://www.mathnet.ru/eng/tmf/v1/i2/p187
This publication is cited in the following 21 articles:
Luca Buoninfante, Junsei Tokuda, Masahide Yamaguchi, “New lower bounds on scattering amplitudes: non-locality constraints”, J. High Energ. Phys., 2024:1 (2024)
Tokuda J., “Extension of Positivity Bounds to Non-Local Theories: Ir Obstructions to Lorentz Invariant Uv Completions”, J. High Energy Phys., 2019, no. 5, 216
Valentin V. Khoze, Michael Spannowsky, “Consistency of Higgsplosion in localizable QFT”, Physics Letters B, 790 (2019), 466
Yongwan Gim, Hwajin Um, Wontae Kim, “Unruh effect of nonlocal field theories with a minimal length”, Physics Letters B, 784 (2018), 206
Calcagni G., “Cosmology of Quantum Gravities”: G. Calcagni, Classical and Quantum Cosmology, Graduate Texts in Physics, Springer International Publishing Ag, 2017, 543–624
Syed Masood, Mir Faizal, Zaid Zaz, Ahmed Farag Ali, Jamil Raza, Mushtaq B. Shah, “The most general form of deformation of the Heisenberg algebra from the generalized uncertainty principle”, Physics Letters B, 763 (2016), 218
Tomboulis E.T., “Nonlocal and Quasilocal Field Theories”, Phys. Rev. D, 92:12 (2015), 125037
Soloviev M.A., “Reconstruction in quantum field theory with a fundamental length”, J Math Phys, 51:9 (2010), 093520
Soloviev, MA, “Quantum field theory with a fundamental length: A general mathematical framework”, Journal of Mathematical Physics, 50:12 (2009), 123519
Efimov, GV, “Blokhintsev and nonlocal quantum field theory”, Physics of Particles and Nuclei, 35:5 (2004), 598
G. V. Efimov, “Amplitudes in Nonlocal Theories at High Energies”, Theoret. and Math. Phys., 128:3 (2001), 1169–1175
M. A. Soloviev, “Lorentz-Covariant Ultradistributions, Hyperfunctions, and Analytic Functionals”, Theoret. and Math. Phys., 128:3 (2001), 1252–1270
Theoret. and Math. Phys., 93:3 (1992), 1438–1449
M. A. Soloviev, “Spacelike asymptotic behavior of vacuum expectation values in nonlocal field theory”, Theoret. and Math. Phys., 52:3 (1982), 854–862
V.Ya Fainberg, M.A Soloviev, “How can local properties be described in field theories without strict locality?”, Annals of Physics, 113:2 (1978), 421
G. D. Romanko, I. V. Khimich, “Fourier transformation of a class of hyperfunctions and formulation of the condition of local commutativity in the framework of localizable quantum field theory in terms of hyperfunctions”, Theoret. and Math. Phys., 23:2 (1975), 451–461