Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2001, Volume 127, Number 2, Pages 179–252
DOI: https://doi.org/10.4213/tmf455
(Mi tmf455)
 

This article is cited in 2 scientific papers (total in 2 papers)

Matrix Models: Geometry of Moduli Spaces and Exact Solutions

L. O. Chekhov

Steklov Mathematical Institute, Russian Academy of Sciences
Full-text PDF (699 kB) Citations (2)
References:
Abstract: We study the connection between characteristics of moduli spaces of Riemann surfaces with marked points and matrix models. The Kontsevich matrix model describes intersection indices on continuous moduli spaces, and the Kontsevich–Penner matrix model describes intersection indices on discretized moduli spaces. Analyzing the constraint algebras satisfied by various generalized Kontsevich matrix models, we derive time transformations that establish exact relations between different models appearing in mathematical physics. We solve the Hermitian one-matrix model using the moment technique in the genus expansion and construct a recursive procedure for solving this model in the double scaling limit.
Received: 22.01.2001
English version:
Theoretical and Mathematical Physics, 2001, Volume 127, Issue 2, Pages 557–618
DOI: https://doi.org/10.1023/A:1010471418775
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: L. O. Chekhov, “Matrix Models: Geometry of Moduli Spaces and Exact Solutions”, TMF, 127:2 (2001), 179–252; Theoret. and Math. Phys., 127:2 (2001), 557–618
Citation in format AMSBIB
\Bibitem{Che01}
\by L.~O.~Chekhov
\paper Matrix Models: Geometry of Moduli Spaces and Exact Solutions
\jour TMF
\yr 2001
\vol 127
\issue 2
\pages 179--252
\mathnet{http://mi.mathnet.ru/tmf455}
\crossref{https://doi.org/10.4213/tmf455}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1863561}
\zmath{https://zbmath.org/?q=an:1077.14528}
\elib{https://elibrary.ru/item.asp?id=13365457}
\transl
\jour Theoret. and Math. Phys.
\yr 2001
\vol 127
\issue 2
\pages 557--618
\crossref{https://doi.org/10.1023/A:1010471418775}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000170547800001}
Linking options:
  • https://www.mathnet.ru/eng/tmf455
  • https://doi.org/10.4213/tmf455
  • https://www.mathnet.ru/eng/tmf/v127/i2/p179
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:606
    Full-text PDF :280
    References:71
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024