Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1985, Volume 62, Number 2, Pages 210–221 (Mi tmf4543)  

This article is cited in 15 scientific papers (total in 15 papers)

Coordinates in relativistic Hamiltonian mechanics

S. N. Sokolov
References:
Abstract: Physical (covariant and measurable) coordinates of free particles and covariant coordinates of the center of mass of a system of particles are found for the three basic forms of relativistic dynamics. For a system of two directly interacting particles in the point form of dynamics, covariant coordinates are found and the equations of motion reduced to a manifestly covariant form. These equations are generalized to the case of interaction of the particles with an external electromagnetic field.
Received: 02.07.1984
English version:
Theoretical and Mathematical Physics, 1985, Volume 62, Issue 2, Pages 140–148
DOI: https://doi.org/10.1007/BF01033523
Bibliographic databases:
Language: Russian
Citation: S. N. Sokolov, “Coordinates in relativistic Hamiltonian mechanics”, TMF, 62:2 (1985), 210–221; Theoret. and Math. Phys., 62:2 (1985), 140–148
Citation in format AMSBIB
\Bibitem{Sok85}
\by S.~N.~Sokolov
\paper Coordinates in relativistic Hamiltonian mechanics
\jour TMF
\yr 1985
\vol 62
\issue 2
\pages 210--221
\mathnet{http://mi.mathnet.ru/tmf4543}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=783053}
\transl
\jour Theoret. and Math. Phys.
\yr 1985
\vol 62
\issue 2
\pages 140--148
\crossref{https://doi.org/10.1007/BF01033523}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1985ARH5400004}
Linking options:
  • https://www.mathnet.ru/eng/tmf4543
  • https://www.mathnet.ru/eng/tmf/v62/i2/p210
  • This publication is cited in the following 15 articles:
    1. B. Desplanques, Y. B. Dong, “RQM description of PS meson form factors, constraints from space-time translations and underlying dynamics”, Eur. Phys. J. A, 47:1 (2011)  crossref
    2. B. Desplanques, “RQM description of the charge form factor of the pion and its asymptotic behavior”, Eur. Phys. J. A, 42:2 (2009)  crossref
    3. B. Desplanques, Y. B. Dong, “Form factors in RQM approaches: Constraints from space-time translations”, Eur. Phys. J. A, 37:1 (2008), 33  crossref
    4. B. Desplanques, “Properties of few-body systems in relativistic quantum mechanics and constraints from transformations under Poincaré space-time translations”, Nuclear Physics A, 790:1-4 (2007), 578c  crossref
    5. Y.B. Dong, “The E1+/M1+ and S1+/M1+ ratios of γN→Δ(1232) with a point-form relativistic quantum mechanics”, Physics Letters B, 638:4 (2006), 333  crossref
    6. B. Desplanques, “Dirac's inspired point form and hadron form factors”, Nuclear Physics A, 755 (2005), 303  crossref
    7. B. Desplanques, “Relativistic quantum mechanics: a Dirac's point-form inspired approach”, Nuclear Physics A, 748:1-2 (2005), 139  crossref
    8. B. DESPLANQUES, “NUCLEON AND PION FORM FACTORS IN DIFFERENT FORMS OF RELATIVISTIC KINEMATICS”, Int. J. Mod. Phys. A, 20:08n09 (2005), 1601  crossref
    9. B. Desplanques, L. Theußl, “Form factors in the “point form” of relativistic quantum mechanics: Single- and two-particle currents”, Eur. Phys. J. A, 21:1 (2004), 93  crossref
    10. L. Theußl, A. Amghar, B. Desplanques, S. Noguera, Few-Body Systems, 14, Few-Body Problems in Physics '02, 2003, 393  crossref
    11. A. Amghar, B. Desplanques, L. Theußl, “The form factor of the pion in “point-form” of relativistic dynamics revisited”, Physics Letters B, 574:3-4 (2003), 201  crossref
    12. A. Amghar, B. Desplanques, L. Theußl, “Comparison of form factors calculated with different expressions for the boost transformation”, Nuclear Physics A, 714:1-2 (2003), 213  crossref
    13. R. P. Gaida, V. I. Tretyak, Yu. G. Yaremko, “Center-of-mass variables in the relativistic Lagrangian dynamics of a system of particles”, Theoret. and Math. Phys., 101:3 (1994), 1443–1453  mathnet  crossref  mathscinet  zmath  isi
    14. L. L. Frankfurt, M. I. Strikman, L. Mankiewicz, M. Sawicki, “Angular-momentum constraints in the light-cone quantum mechanics of the nucleon-nucleon system”, Few-Body Systems, 8:2 (1990), 37  crossref
    15. N. P. Klepikov, “Uniqueness Theorem for the Relativistic Center of a System of Events”, Annalen der Physik, 499:5 (1987), 313  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:357
    Full-text PDF :169
    References:48
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025