Abstract:
A mechanism of rearrangement of Hamiltonians with the change of their discrete
spectra is suggested which uses super symmetrical quantum mechanics. Relation of
the mechanism and arbitrary constants arising in it to inverse scattering problem is
discussed. Transformation group of potentials for which the solutions of Schrödinger
equation are connected with the Darboux transformation is studied.
Citation:
V. P. Berezovoi, A. I. Pashnev, “Supersymmetric quantum mechanics and rearrangement of the spectra of Hamiltonians”, TMF, 70:1 (1987), 146–153; Theoret. and Math. Phys., 70:1 (1987), 102–107
\Bibitem{BerPas87}
\by V.~P.~Berezovoi, A.~I.~Pashnev
\paper Supersymmetric quantum mechanics and rearrangement of the spectra of Hamiltonians
\jour TMF
\yr 1987
\vol 70
\issue 1
\pages 146--153
\mathnet{http://mi.mathnet.ru/tmf4511}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=883790}
\transl
\jour Theoret. and Math. Phys.
\yr 1987
\vol 70
\issue 1
\pages 102--107
\crossref{https://doi.org/10.1007/BF01017016}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1987J608800012}
Linking options:
https://www.mathnet.ru/eng/tmf4511
https://www.mathnet.ru/eng/tmf/v70/i1/p146
This publication is cited in the following 14 articles:
Yurova A.A., Yurov V A., Yurov V.A., “The Cauchy Problem For the Generalized Hyperbolic Novikov-Veselov Equation Via the Moutard Symmetries”, Symmetry-Basel, 12:12 (2020), 2113
Konstantinos Kleidis, Vasilis K. Oikonomou, “Extended Supersymmetric Quantum Mechanics Algebras in Scattering States of Fermions off Domain Walls”, Int J Theor Phys, 54:3 (2015), 933
Oikonomou V.K., “Localized Fermions on Domain Walls and Extended Supersymmetric Quantum Mechanics”, Class. Quantum Gravity, 31:2 (2014), 025018
K. Kleidis, V. K. Oikonomou, “Central Charge Extended Supersymmetric Structures for Fundamental Fermions Around Non-Abelian Vortices”, Int J Theor Phys, 53:8 (2014), 2623
Andrianov A.A. Ioffe M.V., “Nonlinear Supersymmetric Quantum Mechanics: Concepts and Realizations”, J. Phys. A-Math. Theor., 45:50 (2012), 503001
V. S. Olkhovsky, S. P. Maydanyuk, E. Recami, “Non-self-adjoint operators as observables in quantum theory and nuclear physics”, Phys. Part. Nuclei, 41:4 (2010), 508
Yurov, AV, “Nonsingular brane solutions via the Darboux transformation”, Physical Review D, 72:2 (2005), 026003
A A Andrianov, F Cannata, “Nonlinear supersymmetry for spectral design in quantum mechanics”, J. Phys. A: Math. Gen., 37:43 (2004), 10297
V. G. Bagrov, B. F. Samsonov, “Darboux transformation, factorization, supersymmetry in one-dimensional quantum mechanics”, Theoret. and Math. Phys., 104:2 (1995), 1051–1060
B. F. Samsonov, I. N. Ovcharov, “Darboux transformation and nonclassical orthogonal polynomials”, Russ Phys J, 38:4 (1995), 378
V P Berezovoj, A I Pashnev, “Three-dimensional N=4 extended supersymmetric quantum mechanics”, Class. Quantum Grav., 8:12 (1991), 2141
V. P. Berezovoi, A. I. Pashnev, “One-dimensional extended supersymmetric quantum mechanics”, Theoret. and Math. Phys., 78:2 (1989), 206–211
F. Gesztesy, Lecture Notes in Physics, 345, Schrödinger Operators, 1989, 93
V. P. Berezovoi, A. I. Pashnev, “N=2 supersymmetric quantum mechanics and the inverse scattering problem”, Theoret. and Math. Phys., 74:3 (1988), 264–268