Typesetting math: 100%
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1988, Volume 74, Number 3, Pages 345–359 (Mi tmf4481)  

This article is cited in 105 scientific papers (total in 105 papers)

Scattering problems on noncompact graphs

N. I. Gerasimenko, B. S. Pavlov
References:
Abstract: A Sturm–Liouville problem on compact graphs is formulated and analyzed. The scattering problem for the Schrödinger equation on noncompact graphs is also formulated and analyzed.
Received: 13.10.1986
English version:
Theoretical and Mathematical Physics, 1988, Volume 74, Issue 3, Pages 230–240
DOI: https://doi.org/10.1007/BF01016616
Bibliographic databases:
Language: Russian
Citation: N. I. Gerasimenko, B. S. Pavlov, “Scattering problems on noncompact graphs”, TMF, 74:3 (1988), 345–359; Theoret. and Math. Phys., 74:3 (1988), 230–240
Citation in format AMSBIB
\Bibitem{GerPav88}
\by N.~I.~Gerasimenko, B.~S.~Pavlov
\paper Scattering problems on noncompact graphs
\jour TMF
\yr 1988
\vol 74
\issue 3
\pages 345--359
\mathnet{http://mi.mathnet.ru/tmf4481}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=953298}
\zmath{https://zbmath.org/?q=an:0659.47006}
\transl
\jour Theoret. and Math. Phys.
\yr 1988
\vol 74
\issue 3
\pages 230--240
\crossref{https://doi.org/10.1007/BF01016616}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1988U172700003}
Linking options:
  • https://www.mathnet.ru/eng/tmf4481
  • https://www.mathnet.ru/eng/tmf/v74/i3/p345
  • This publication is cited in the following 105 articles:
    1. Sergei Avdonin, Nina Avdonina, Olha Sus, “Inverse dynamic problem for the Dirac system on finite metric graphs and the leaf peeling method”, J. Phys. A: Math. Theor., 58:5 (2025), 055203  crossref
    2. Pavel Kurasov, Operator Theory: Advances and Applications, 293, Spectral Geometry of Graphs, 2024, 1  crossref
    3. Francesco Demontis, Cornelis van der Mee, “From the AKNS system to the matrix Schrödinger equation with vanishing potentials: Direct and inverse problems”, Stud Appl Math, 150:2 (2023), 481  crossref
    4. Serifenur Cebesoy, Elgiz Bairamov, Yelda Aygar, “Scattering problems of impulsive Schrödinger equations with matrix coefficients”, Ricerche mat, 72:1 (2023), 399  crossref
    5. Gaukhar Arepova, Ludmila Alexeyeva, Dana Arepova, “Solution to the Dirichlet Problem of the Wave Equation on a Star Graph”, Mathematics, 11:20 (2023), 4234  crossref
    6. Francesco Demontis, Cornelis van der Mee, “A Matrix Schrödinger Approach to Focusing Nonlinear Schrödinger Equations with Nonvanishing Boundary Conditions”, J Nonlinear Sci, 32:4 (2022)  crossref
    7. Yaroslav Granovskyi, Mark Malamud, Hagen Neidhardt, “Non-compact Quantum Graphs with Summable Matrix Potentials”, Ann. Henri Poincaré, 22:1 (2021), 1  crossref
    8. Pavel Kurasov, Jacob Muller, “n-Laplacians on Metric Graphs and Almost Periodic Functions: I”, Ann. Henri Poincaré, 22:1 (2021), 121  crossref
    9. D S Nikiforov, I V Blinova, I Y Popov, “Schrödinger and Dirac dynamics on time-dependent quantum graph”, Indian J Phys, 93:7 (2019), 913  crossref
    10. Kiyoshi Mochizuki, Igor Trooshin, Trends in Mathematics, Analysis, Probability, Applications, and Computation, 2019, 199  crossref
    11. Anton I. Popov, Igor Y. Popov, Dmitri S. Nikiforov, Irina V. Blinova, CENTRAL EUROPEAN SYMPOSIUM ON THERMOPHYSICS 2019 (CEST), 2133, CENTRAL EUROPEAN SYMPOSIUM ON THERMOPHYSICS 2019 (CEST), 2019, 290007  crossref
    12. Kirill Cherednichenko, Yulia Ershova, Alexander V. Kiselev, “Time-Dispersive Behavior as a Feature of Critical-Contrast Media”, SIAM J. Appl. Math., 79:2 (2019), 690  crossref
    13. Jan Boman, Pavel Kurasov, Rune Suhr, “Schrödinger Operators on Graphs and Geometry II. Spectral Estimates for
      \varvecL1\varvecL1
      L
      1
      -potentials and an Ambartsumian Theorem”, Integr. Equ. Oper. Theory, 90:3 (2018)  crossref
    14. Igor Y. Popov, Dmitri S. Nikiforov, “Classical and quantum wave dynamics on time-dependent geometric graph”, Chinese Journal of Physics, 56:2 (2018), 747  crossref
    15. Kiyoshi Mochizuki, Igor Trooshin, Trends in Mathematics, New Trends in Analysis and Interdisciplinary Applications, 2017, 319  crossref
    16. Ricardo Weder, “The number of eigenvalues of the matrix Schrödinger operator on the half line with general boundary conditions”, Journal of Mathematical Physics, 58:10 (2017)  crossref
    17. Efendiev R.F. Orudzhev H.D. El-Raheem Z.F., “Spectral analysis of wave propagation on branching strings”, Bound. Value Probl., 2016, 215  crossref  mathscinet  zmath  isi  elib  scopus
    18. Ricardo Weder, “Trace formulas for the matrix Schrödinger operator on the half-line with general boundary conditions”, Journal of Mathematical Physics, 57:11 (2016)  crossref
    19. Ricardo Weder, “Scattering theory for the matrix Schrödinger operator on the half line with general boundary conditions”, Journal of Mathematical Physics, 56:9 (2015)  crossref
    20. Igor Yu Popov, Irina V Blinova, Anton I Popov, “Discrete spectrum for quantum graph with local disturbance of the periodicity”, J. Phys.: Conf. Ser., 661 (2015), 012024  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:729
    Full-text PDF :359
    References:83
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025