Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1981, Volume 48, Number 1, Pages 89–105 (Mi tmf4475)  

This article is cited in 4 scientific papers (total in 4 papers)

Construction of a kinetic equation for a quantum dynamical system interacting with a phonon field by the method of ordered operators

G. O. Balabanyan
References:
Abstract: The derivation of a general kinetic equation for a quantum dynamical system interacting with a phonon field is considered. The theory is constructed by the method of ordered operators without the use of any approximations. The general theory is illustrated by the example of a quantum harmonic oscillator under the influence of a variable external classical force that is linearly coupled to a thermal bath, i.e., a system of noninteraeting quantum oscillators. A generalized kinetic equation of Hloeh type is derived on the basis of the obtained exact relations after an appropriate approximation procedure for the quantum oscillator.
Received: 09.06.1980
English version:
Theoretical and Mathematical Physics, 1981, Volume 48, Issue 1, Pages 624–635
DOI: https://doi.org/10.1007/BF01037988
Bibliographic databases:
Language: Russian
Citation: G. O. Balabanyan, “Construction of a kinetic equation for a quantum dynamical system interacting with a phonon field by the method of ordered operators”, TMF, 48:1 (1981), 89–105; Theoret. and Math. Phys., 48:1 (1981), 624–635
Citation in format AMSBIB
\Bibitem{Bal81}
\by G.~O.~Balabanyan
\paper Construction of a~kinetic equation for a~quantum dynamical system interacting with a~phonon field by the method of ordered operators
\jour TMF
\yr 1981
\vol 48
\issue 1
\pages 89--105
\mathnet{http://mi.mathnet.ru/tmf4475}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=630273}
\transl
\jour Theoret. and Math. Phys.
\yr 1981
\vol 48
\issue 1
\pages 624--635
\crossref{https://doi.org/10.1007/BF01037988}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981ND61200010}
Linking options:
  • https://www.mathnet.ru/eng/tmf4475
  • https://www.mathnet.ru/eng/tmf/v48/i1/p89
  • This publication is cited in the following 4 articles:
    1. G. O. Balabanyan, “Application of the method of ordered operators in the theory of liquid metals”, Theoret. and Math. Phys., 59:2 (1984), 499–509  mathnet  crossref  mathscinet  isi
    2. G. O. Balabanyan, “Use of the method of ordered operators in the theory of laser systems. II. Construction of a theory of laser radiation for Dicke models”, Theoret. and Math. Phys., 54:2 (1983), 181–188  mathnet  crossref  mathscinet  isi
    3. G. O. Balabanyan, “Derivation of asymptotically exact equations for the radiation in model systems of Dicke type”, Theoret. and Math. Phys., 56:3 (1983), 912–921  mathnet  crossref  mathscinet  isi
    4. G. O. Balabanyan, “Use of the method of ordered operators in the theory of laser systems. Derivation of asymptotically exact equations for radiation. I”, Theoret. and Math. Phys., 54:1 (1983), 82–92  mathnet  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:442
    Full-text PDF :117
    References:79
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025