Abstract:
An expression is obtained for the radiative correction to the electron mass in a superstrong magnetic field in the approximation of large logarithms ($\ln\xi\gg 1$, $\xi=B/B_0$, $B_0=m^2/e=4,41\cdot 10^{13}$ Gs); the correction has the form $m\{\exp((\alpha/4\pi)\ln^2\xi)-1\}$. This result shows that the correction reaches values of the order of the mass only in anomalously large fields $B\sim 10^{15} B_0$.
Citation:
Yu. M. Loskutov, V. V. Skobelev, “Behavior of the mass operator in a superstrong magnetic field: Summation of the perturbation theory diagrams”, TMF, 48:1 (1981), 44–48; Theoret. and Math. Phys., 48:1 (1981), 594–597
\Bibitem{LosSko81}
\by Yu.~M.~Loskutov, V.~V.~Skobelev
\paper Behavior of the mass operator in a~superstrong magnetic field: Summation of the perturbation theory diagrams
\jour TMF
\yr 1981
\vol 48
\issue 1
\pages 44--48
\mathnet{http://mi.mathnet.ru/tmf4470}
\transl
\jour Theoret. and Math. Phys.
\yr 1981
\vol 48
\issue 1
\pages 594--597
\crossref{https://doi.org/10.1007/BF01037983}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981ND61200005}
Linking options:
https://www.mathnet.ru/eng/tmf4470
https://www.mathnet.ru/eng/tmf/v48/i1/p44
This publication is cited in the following 11 articles:
I. Yu. Kostyukov, E. N. Nerush, A. A. Mironov, A. M. Fedotov, “Short-term evolution of electron wave packets in constant crossed electromagnetic fields with radiative corrections”, Phys. Rev. D, 108:9 (2023)
A. A. Mironov, S. Meuren, A. M. Fedotov, “Resummation of QED radiative corrections in a strong constant crossed field”, Phys. Rev. D, 102 (2020), 53005–18
V. Yakimenko, S. Meuren, F. Del Gaudio, C. Baumann, A. Fedotov, F. Fiuza, T. Grismayer, M. J. Hogan, A. Pukhov, L. O. Silva, G. White, “Prospect of Studying Nonperturbative QED with Beam-Beam Collisions”, Phys. Rev. Lett., 122:19 (2019)
B. Machet, “1-Loop mass generation by a constant external magnetic field for an electron propagating in a thin medium”, Int. J. Mod. Phys. B, 32:10 (2018), 1850114
B. Machet, “The 1-loop self-energy of an electron in a strong external magnetic field revisited”, Int. J. Mod. Phys. A, 31:13 (2016), 1650071
S. I. Godunov, “Two-loop corrections to the potential of a pointlike charge in a superstrong magnetic field”, Phys. Atom. Nuclei, 76:7 (2013), 901
A. V. KUZNETSOV, N. V. MIKHEEV, M. V. OSIPOV, “ELECTRON MASS OPERATOR IN A STRONG MAGNETIC FIELD”, Mod. Phys. Lett. A, 17:04 (2002), 231
A. V. Kuznetsov, N. V. Mikheev, “Electron Mass Operator in a Strong Magnetic Field and Dynamical Chiral Symmetry Breaking”, Phys. Rev. Lett., 89:1 (2002)
V.P. Gusynin, A.V. Smilga, “Electron self-energy in strong magnetic field: summation of double logarithmic terms”, Physics Letters B, 450:1-3 (1999), 267
Yu. M. Loskutov, V. V. Skobelev, “Effective Lagrangian of $A^3(\nu\bar\nu)$ interaction and the $\gamma\gamma\to\gamma(\nu\bar\nu)$ process in the two-dimensional approximation of quantum electrodynamics”, Theoret. and Math. Phys., 70:2 (1987), 215–219
Yu. M. Loskutov, B. A. Lysov, V. V. Skobelev, “Field asymptotic behavior of a polarization operator”, Theoret. and Math. Phys., 53:3 (1982), 1252–1255