Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1981, Volume 48, Number 1, Pages 44–48 (Mi tmf4470)  

This article is cited in 11 scientific papers (total in 11 papers)

Behavior of the mass operator in a superstrong magnetic field: Summation of the perturbation theory diagrams

Yu. M. Loskutov, V. V. Skobelev
References:
Abstract: An expression is obtained for the radiative correction to the electron mass in a superstrong magnetic field in the approximation of large logarithms ($\ln\xi\gg 1$, $\xi=B/B_0$, $B_0=m^2/e=4,41\cdot 10^{13}$ Gs); the correction has the form $m\{\exp((\alpha/4\pi)\ln^2\xi)-1\}$. This result shows that the correction reaches values of the order of the mass only in anomalously large fields $B\sim 10^{15} B_0$.
Received: 12.11.1980
English version:
Theoretical and Mathematical Physics, 1981, Volume 48, Issue 1, Pages 594–597
DOI: https://doi.org/10.1007/BF01037983
Bibliographic databases:
Language: Russian
Citation: Yu. M. Loskutov, V. V. Skobelev, “Behavior of the mass operator in a superstrong magnetic field: Summation of the perturbation theory diagrams”, TMF, 48:1 (1981), 44–48; Theoret. and Math. Phys., 48:1 (1981), 594–597
Citation in format AMSBIB
\Bibitem{LosSko81}
\by Yu.~M.~Loskutov, V.~V.~Skobelev
\paper Behavior of the mass operator in a~superstrong magnetic field: Summation of the perturbation theory diagrams
\jour TMF
\yr 1981
\vol 48
\issue 1
\pages 44--48
\mathnet{http://mi.mathnet.ru/tmf4470}
\transl
\jour Theoret. and Math. Phys.
\yr 1981
\vol 48
\issue 1
\pages 594--597
\crossref{https://doi.org/10.1007/BF01037983}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981ND61200005}
Linking options:
  • https://www.mathnet.ru/eng/tmf4470
  • https://www.mathnet.ru/eng/tmf/v48/i1/p44
  • This publication is cited in the following 11 articles:
    1. I. Yu. Kostyukov, E. N. Nerush, A. A. Mironov, A. M. Fedotov, “Short-term evolution of electron wave packets in constant crossed electromagnetic fields with radiative corrections”, Phys. Rev. D, 108:9 (2023)  crossref
    2. A. A. Mironov, S. Meuren, A. M. Fedotov, “Resummation of QED radiative corrections in a strong constant crossed field”, Phys. Rev. D, 102 (2020), 53005–18  mathnet  crossref  isi  scopus
    3. V. Yakimenko, S. Meuren, F. Del Gaudio, C. Baumann, A. Fedotov, F. Fiuza, T. Grismayer, M. J. Hogan, A. Pukhov, L. O. Silva, G. White, “Prospect of Studying Nonperturbative QED with Beam-Beam Collisions”, Phys. Rev. Lett., 122:19 (2019)  crossref
    4. B. Machet, “1-Loop mass generation by a constant external magnetic field for an electron propagating in a thin medium”, Int. J. Mod. Phys. B, 32:10 (2018), 1850114  crossref
    5. B. Machet, “The 1-loop self-energy of an electron in a strong external magnetic field revisited”, Int. J. Mod. Phys. A, 31:13 (2016), 1650071  crossref
    6. S. I. Godunov, “Two-loop corrections to the potential of a pointlike charge in a superstrong magnetic field”, Phys. Atom. Nuclei, 76:7 (2013), 901  crossref
    7. A. V. KUZNETSOV, N. V. MIKHEEV, M. V. OSIPOV, “ELECTRON MASS OPERATOR IN A STRONG MAGNETIC FIELD”, Mod. Phys. Lett. A, 17:04 (2002), 231  crossref
    8. A. V. Kuznetsov, N. V. Mikheev, “Electron Mass Operator in a Strong Magnetic Field and Dynamical Chiral Symmetry Breaking”, Phys. Rev. Lett., 89:1 (2002)  crossref
    9. V.P. Gusynin, A.V. Smilga, “Electron self-energy in strong magnetic field: summation of double logarithmic terms”, Physics Letters B, 450:1-3 (1999), 267  crossref
    10. Yu. M. Loskutov, V. V. Skobelev, “Effective Lagrangian of $A^3(\nu\bar\nu)$ interaction and the $\gamma\gamma\to\gamma(\nu\bar\nu)$ process in the two-dimensional approximation of quantum electrodynamics”, Theoret. and Math. Phys., 70:2 (1987), 215–219  mathnet  crossref  isi
    11. Yu. M. Loskutov, B. A. Lysov, V. V. Skobelev, “Field asymptotic behavior of a polarization operator”, Theoret. and Math. Phys., 53:3 (1982), 1252–1255  mathnet  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:268
    Full-text PDF :100
    References:47
    First page:1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025