Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1971, Volume 9, Number 2, Pages 273–290 (Mi tmf4463)  

This article is cited in 8 scientific papers (total in 8 papers)

Functional integration method in the theory of superconductivity

A. V. Svidzinskii
References:
Abstract: The exact representation of the statistical sum for a superconductor is given in terms of the functional integral. The theory is used to describe the fluctuation effect in superconductors above the critical temperature.
Received: 18.12.1970
English version:
Theoretical and Mathematical Physics, 1971, Volume 9, Issue 2, Pages 1134–1145
DOI: https://doi.org/10.1007/BF01036950
Language: Russian
Citation: A. V. Svidzinskii, “Functional integration method in the theory of superconductivity”, TMF, 9:2 (1971), 273–290; Theoret. and Math. Phys., 9:2 (1971), 1134–1145
Citation in format AMSBIB
\Bibitem{Svi71}
\by A.~V.~Svidzinskii
\paper Functional integration method in the theory of superconductivity
\jour TMF
\yr 1971
\vol 9
\issue 2
\pages 273--290
\mathnet{http://mi.mathnet.ru/tmf4463}
\transl
\jour Theoret. and Math. Phys.
\yr 1971
\vol 9
\issue 2
\pages 1134--1145
\crossref{https://doi.org/10.1007/BF01036950}
Linking options:
  • https://www.mathnet.ru/eng/tmf4463
  • https://www.mathnet.ru/eng/tmf/v9/i2/p273
  • This publication is cited in the following 8 articles:
    1. Rufus Boyack, “Restoring gauge invariance in conventional fluctuation corrections to a superconductor”, Phys. Rev. B, 98:18 (2018)  crossref
    2. V. Apinyan, T. K. Kopeć, “Probing Phase Coherence Via Density of States for Strongly Correlated Excitons”, J Low Temp Phys, 178:5-6 (2015), 295  crossref
    3. Iddo Ussishkin, “Superconducting fluctuations and the Nernst effect: A diagrammatic approach”, Phys. Rev. B, 68:2 (2003)  crossref
    4. V. N. Popov, P. A. Sevastianov, “Сollective excitations in the superconductive phase of the one-band Hubbard model”, Theoret. and Math. Phys., 102:3 (1995), 331–335  mathnet  crossref  zmath  isi
    5. V. N. Popov, P. A. Sevastianov, “Collective excitations in the ferro- and antiferromagnetic states of the two-dimensional repulsive Hubbard model”, J. Math. Sci., 83:1 (1997), 145–164  mathnet  mathnet  crossref
    6. B. V. Moshchinskii, V. K. Fedyanin, “Asymptotic behavior of the Heisenberg model with long-range interaction”, Theoret. and Math. Phys., 31:1 (1977), 345–349  mathnet  crossref
    7. V. A. Andrianov, V. N. Popov, “Hydrodynamic action and Bose spectrum of superfluid Fermi systems”, Theoret. and Math. Phys., 28:3 (1976), 829–837  mathnet  crossref
    8. I. O. Kulik, R. I. Shekhter, “Charge quantization effects and the superconductivity of small particles”, Soviet Journal of Low Temperature Physics, 2:1 (1976), 9  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:380
    Full-text PDF :207
    References:34
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025