|
Teoreticheskaya i Matematicheskaya Fizika, 1981, Volume 47, Number 2, Pages 266–276
(Mi tmf4461)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Asymptotic behavior of the spectrum of an anharmonic oscillator
L. A. Sakhnovich
Abstract:
The asymptotic expansion
$$
\lambda_n=n-\frac{1}{2}+\frac{1}{2\pi\sqrt n}\biggl[\int_{-\infty}^{\infty}q(t)d(t)+o(1)\biggr], \quad n\to\infty,
$$
is obtained for the spectrum of the equation $-y^{''}+[x^2/4+q(x)]y=\lambda y$, $-\infty<x<\infty$, of the anharmonic oscillator. The ease when the potential $v(x)$ has the form $v(x)=\alpha|x|+q(x)$ is also considered.
Received: 01.02.1980
Citation:
L. A. Sakhnovich, “Asymptotic behavior of the spectrum of an anharmonic oscillator”, TMF, 47:2 (1981), 266–276; Theoret. and Math. Phys., 47:2 (1981), 449–456
Linking options:
https://www.mathnet.ru/eng/tmf4461 https://www.mathnet.ru/eng/tmf/v47/i2/p266
|
Statistics & downloads: |
Abstract page: | 422 | Full-text PDF : | 149 | References: | 62 | First page: | 1 |
|