Abstract:
The concepts of energy levels and quasi-levels are defined in a unique way for
three-dimensional Schrödinger operator with complex finite potential. The behaviour of
quasi-levels in the case of analytical perturbation of potential is studied. For the first
correction of the perturbation theory the analogue of the secular equation is obtained.
Citation:
T. M. Gataullin, M. V. Karasev, “On the perturbation of the quasilevels of a Schrödinger operator with complex potential”, TMF, 9:2 (1971), 252–263; Theoret. and Math. Phys., 9:2 (1971), 1117–1126
\Bibitem{GatKar71}
\by T.~M.~Gataullin, M.~V.~Karasev
\paper On the perturbation of the quasilevels of a~Schr\"odinger operator with complex potential
\jour TMF
\yr 1971
\vol 9
\issue 2
\pages 252--263
\mathnet{http://mi.mathnet.ru/tmf4460}
\zmath{https://zbmath.org/?q=an:0219.47012}
\transl
\jour Theoret. and Math. Phys.
\yr 1971
\vol 9
\issue 2
\pages 1117--1126
\crossref{https://doi.org/10.1007/BF01036948}
Linking options:
https://www.mathnet.ru/eng/tmf4460
https://www.mathnet.ru/eng/tmf/v9/i2/p252
This publication is cited in the following 6 articles:
D.I. Borisov, D.A. Zezyulin, “On Perturbation of Thresholds in Essential Spectrum under Coexistence of Virtual Level and Spectral Singularity”, Russ. J. Math. Phys., 31:1 (2024), 60
D. I. Borisov, D. A. Zezyulin, “On the Bifurcation of Thresholds of the Essential Spectrum with a Spectral Singularity”, Diff Equat, 59:2 (2023), 278
Timur M. Gataullin, Sergey T. Gataullin, Ksenia V. Ivanova, Lecture Notes in Networks and Systems, 155, “Smart Technologies” for Society, State and Economy, 2021, 1108
T. S. Tinyukova, “Issledovanie raznostnogo uravneniya Shredingera dlya nekotorykh fizicheskikh modelei”, Izv. IMI UdGU, 2013, no. 2(42), 3–57
Yu. P. Chuburin, “Resonance multiplicity of a perturbed periodic Schrödinger operator”, Theoret. and Math. Phys., 116:1 (1998), 846–855
Yu. P. Chuburin, “On small perturbations of the Schrödinger equation with periodic potential”, Theoret. and Math. Phys., 110:3 (1997), 351–359