Abstract:
A theory of single-mode laser radiation is constructed on the basis of asymptotically
exact equations for various Dicke type model systems. Conditions are found for
transition to the lasing regime, and the time correlation functions are calculated.
The theory of multimode laser radiation is discussed.
Citation:
G. O. Balabanyan, “Theory of single-mode laser radiation for Dicke type model systems”, TMF, 58:1 (1984), 109–120; Theoret. and Math. Phys., 58:1 (1984), 72–79
\Bibitem{Bal84}
\by G.~O.~Balabanyan
\paper Theory of single-mode laser radiation for Dicke type model systems
\jour TMF
\yr 1984
\vol 58
\issue 1
\pages 109--120
\mathnet{http://mi.mathnet.ru/tmf4433}
\transl
\jour Theoret. and Math. Phys.
\yr 1984
\vol 58
\issue 1
\pages 72--79
\crossref{https://doi.org/10.1007/BF01031037}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1984TA24500009}
Linking options:
https://www.mathnet.ru/eng/tmf4433
https://www.mathnet.ru/eng/tmf/v58/i1/p109
This publication is cited in the following 14 articles:
L Ts Adzhemyan, J Honkonen, T L Kim, M V Kompaniets, L Sladkoff, A N Vasil'ev, “Some specific features of the ε expansion in the theory of turbulence and the possibility of its improvement”, J. Phys. A: Math. Gen., 39:25 (2006), 7789
M Jurcisin, M Stehlik, “D-dimensional developed MHD turbulence: double expansion model”, J. Phys. A: Math. Gen., 39:25 (2006), 8035
L. Ts. Adzhemyan, J. Honkonen, T. L. Kim, L. Sladkoff, “Two-loop calculation of the turbulent Prandtl number”, Phys. Rev. E, 71:5 (2005)
Dmitrij V. Shirkov, Lecture Notes in Physics, 558, Quantum Field Theory, 2000, 157
M. Hnatich, J. Honkonen, D. Horvath, R. Semancik, “Advection of a passive scalar near two dimensions”, Phys. Rev. E, 59:4 (1999), 4112
N. Antonov, M. Hnatich, D. Horváth, M. Nalimov, “The Anomalous Diffusion of the Self-Interacting Passive Scalar in the Turbulent Environment”, Int. J. Mod. Phys. B, 12:19 (1998), 1937
N. V. Antonov, “The renormalization group in the problem of turbulent convection of a passive scalar impurity with nonlinear diffusion”, J. Exp. Theor. Phys., 85:5 (1997), 898
T. L. Kim, A. V. Serdyukov, “Quantum-field renormalization group in the theory of developed turbulence: Consideration of anisotropy and passive scalar admixtures”, Theoret. and Math. Phys., 105:3 (1995), 1525–1533
É. V. Teodorovich, “On the Yakhot—Orszag theory of turbulence”, Fluid Dyn, 29:6 (1994), 770
M. Gnatich, “Quantum-field renormalization group in turbulence theory:
Chemically active scalar admixture”, Theoret. and Math. Phys., 83:3 (1990), 601–608
L. Ts. Adzhemyan, A. N. Vasil'ev, M. Gnatich, “Renormalization-group approach in the theory of turbulence: Renormalization and critical dimensions of the composite operators of the energy-momentum tensor”, Theoret. and Math. Phys., 74:2 (1988), 115–123
L. Ts. Adzhemyan, A. N. Vasil'ev, M. Gnatich, “Turbulent dynamo as spontaneous symmetry breaking”, Theoret. and Math. Phys., 72:3 (1987), 940–950
S. A. Fedotov, M. B. Shirshov, “Functional integral method for investigating the dynamics of a Dicke type model”, Theoret. and Math. Phys., 69:2 (1986), 1151–1156
L. Ts. Adzhemyan, A. N. Vasil'ev, M. Gnatich, “Quantum-field renormalization group in the theory of turbulence: Magnetohydrodynamics”, Theoret. and Math. Phys., 64:2 (1985), 777–785