Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1971, Volume 9, Number 1, Pages 44–59 (Mi tmf4430)  

This article is cited in 6 scientific papers (total in 6 papers)

On the representation of scattering amplitudes as path integrals in quantum field theory

V. A. Matveev, A. N. Tavkhelidze
References:
Abstract: A new representation is derived for scattering amplitudes as path integrals in the framework of simple models of quantum field theory. The problem of mass and wave function renormsllzatlon is discussed and a generalization to inelastic amplitudes is given.
Received: 11.06.1970
English version:
Theoretical and Mathematical Physics, 1971, Volume 9, Issue 1, Pages 968–978
DOI: https://doi.org/10.1007/BF01036024
Language: Russian
Citation: V. A. Matveev, A. N. Tavkhelidze, “On the representation of scattering amplitudes as path integrals in quantum field theory”, TMF, 9:1 (1971), 44–59; Theoret. and Math. Phys., 9:1 (1971), 968–978
Citation in format AMSBIB
\Bibitem{MatTav71}
\by V.~A.~Matveev, A.~N.~Tavkhelidze
\paper On the representation of scattering amplitudes as path integrals in quantum field theory
\jour TMF
\yr 1971
\vol 9
\issue 1
\pages 44--59
\mathnet{http://mi.mathnet.ru/tmf4430}
\transl
\jour Theoret. and Math. Phys.
\yr 1971
\vol 9
\issue 1
\pages 968--978
\crossref{https://doi.org/10.1007/BF01036024}
Linking options:
  • https://www.mathnet.ru/eng/tmf4430
  • https://www.mathnet.ru/eng/tmf/v9/i1/p44
  • This publication is cited in the following 6 articles:
    1. Nguyen Suan Han, Do Thu Ha, Nguyen Nhu Xuan, “The contribution of effective quantum gravity to the high energy scattering in the framework of modified perturbation theory and one loop approximation”, Eur. Phys. J. C, 79:10 (2019)  crossref
    2. Rosenfelder R., “Scattering Theory With Path Integrals”, J. Math. Phys., 55:3 (2014), 032106  crossref  isi
    3. Nguyen Suan Han, Eap Ponna, “Straight-line path approximation for studying Planckian-energy scattering in quantum gravity”, Il Nuovo Cimento A (1971-1996), 110:5 (1997), 459  crossref
    4. A. V. Bogdanov, G. V. Dubrovskiy, “Path integral representation for inelastic scattering amplitude and its quasiclassical approximations”, Theoret. and Math. Phys., 30:2 (1977), 146–152  mathnet  crossref
    5. Nguen Suan Han, V. V. Nesterenko, “High-energy scattering of composite particles in the functional approach”, Theoret. and Math. Phys., 24:2 (1975), 768–775  mathnet  crossref  mathscinet
    6. B. M. Barbashov, V. V. Nesterenko, “Approximate solutions in the model Lint=h2ψ2φ2 and equations for Green's functions on paths”, Theoret. and Math. Phys., 19:1 (1974), 340–348  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:456
    Full-text PDF :144
    References:57
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025