Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1983, Volume 54, Number 1, Pages 124–129 (Mi tmf4369)  

This article is cited in 40 scientific papers (total in 40 papers)

Calculation of many-loop diagrams of perturbation theory

N. I. Usyukina
References:
Abstract: Some identities are formulated for semi-unique vertices and semi-unique triangles that occur in the diagrams of perturbation theory with massless scalar particles. The use of these identities makes it possible to develop a reduction scheme by means of which the result can be obtained for many-loop diagrams without expansion in infinite series in Gegenbauer polynomials and without the use of the operation of differentiation, which leads to additional kinematic complications. As a result, the calculation of many-loop diagrams of the perturbation theory is significantly simplified.
Received: 29.04.1982
English version:
Theoretical and Mathematical Physics, 1983, Volume 54, Issue 1, Pages 78–81
DOI: https://doi.org/10.1007/BF01017127
Bibliographic databases:
Language: Russian
Citation: N. I. Usyukina, “Calculation of many-loop diagrams of perturbation theory”, TMF, 54:1 (1983), 124–129; Theoret. and Math. Phys., 54:1 (1983), 78–81
Citation in format AMSBIB
\Bibitem{Usy83}
\by N.~I.~Usyukina
\paper Calculation of many-loop diagrams of perturbation theory
\jour TMF
\yr 1983
\vol 54
\issue 1
\pages 124--129
\mathnet{http://mi.mathnet.ru/tmf4369}
\transl
\jour Theoret. and Math. Phys.
\yr 1983
\vol 54
\issue 1
\pages 78--81
\crossref{https://doi.org/10.1007/BF01017127}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1983RF77900010}
Linking options:
  • https://www.mathnet.ru/eng/tmf4369
  • https://www.mathnet.ru/eng/tmf/v54/i1/p124
  • This publication is cited in the following 40 articles:
    1. Paul-Hermann Balduf, Springer Theses, Dyson–Schwinger Equations, Renormalization Conditions, and the Hopf Algebra of Perturbative Quantum Field Theory, 2024, 1  crossref
    2. Aleksandr V. Ivanov, “Three-loop renormalization of the quantum action for a four-dimensional scalar model with quartic interaction with the usage of the background field method and a cutoff regularization”, Nuclear Physics B, 1006 (2024), 116647  crossref
    3. Anatoly V. Kotikov, “Effective Quantum Field Theory Methods for Calculating Feynman Integrals”, Symmetry, 16:1 (2023), 52  crossref
    4. Andrei I. Davydychev, York Schröder, “Recursion-free solution for two-loop vacuum integrals with “collinear” masses”, J. High Energ. Phys., 2022:12 (2022)  crossref
    5. Kotikov V A., “Some Examples of Calculation of Massless and Massive Feynman Integrals”, Particles, 4:3 (2021), 361–380  crossref  isi
    6. Michelangelo Preti, “The Game of Triangles”, J. Phys.: Conf. Ser., 1525:1 (2020), 012015  crossref
    7. Anatoly V. Kotikov, “About Calculation of Massless and Massive Feynman Integrals”, Particles, 3:2 (2020), 394  crossref
    8. Kotikov A.V. Teber S., “Multi-Loop Techniques For Massless Feynman Diagram Calculations”, Phys. Part. Nuclei, 50:1 (2019), 1–41  crossref  isi
    9. Gonzalez I. Kondrashuk I. Notte-Cuello E.A. Parra-Ferrada I., “Multi-Fold Contour Integrals of Certain Ratios of Euler Gamma Functions From Feynman Diagrams: Orthogonality of Triangles”, Anal. Math. Phys., 8:4 (2018), 589–602  crossref  mathscinet  zmath  isi  scopus
    10. S. Teber, A. V. Kotikov, “The method of uniqueness and the optical conductivity of graphene: New application of a powerful technique for multiloop calculations”, Theoret. and Math. Phys., 190:3 (2017), 446–457  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    11. A. V. Kotikov, S. Teber, “Two-loop fermion self-energy in reduced quantum electrodynamics and application to the ultrarelativistic limit of graphene”, Phys. Rev. D, 89:6 (2014)  crossref
    12. S. Teber, “Two-loop fermion self-energy and propagator in reducedQED3,2”, Phys. Rev. D, 89:6 (2014)  crossref
    13. D. I. Kazakov, “Evaluation of multi-box diagrams in six dimensions”, J. High Energ. Phys., 2014:4 (2014)  crossref
    14. I. Gonzalez, I. Kondrashuk, “Box ladders in a noninteger dimension”, Theoret. and Math. Phys., 177:2 (2013), 1515–1539  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    15. Pedro Allendes, Bernd A. Kniehl, Igor Kondrashuk, Eduardo A. Notte-Cuello, Marko Rojas-Medar, “Solution to Bethe–Salpeter equation via Mellin–Barnes transform”, Nuclear Physics B, 870:1 (2013), 243  crossref
    16. A. V. Kotikov, S. Teber, “Note on an application of the method of uniqueness to reduced quantum electrodynamics”, Phys. Rev. D, 87:8 (2013)  crossref
    17. Ivan Gonzalez, Igor Kondrashuk, “Belokurov-Usyukina loop reduction in non-integer dimension”, Phys. Part. Nuclei, 44:2 (2013), 268  crossref
    18. Vladimir A. Smirnov, Springer Tracts in Modern Physics, 250, Analytic Tools for Feynman Integrals, 2012, 275  crossref
    19. Pedro Allendes, Natanael Guerrero, Igor Kondrashuk, Eduardo A. Notte Cuello, “New four-dimensional integrals by Mellin–Barnes transform”, Journal of Mathematical Physics, 51:5 (2010)  crossref
    20. Yu. G. Kondrat'ev, A. M. Chebotarev, “Bernstein theorems and transformations of correlation measures in statistical physics”, Math. Notes, 79:5 (2006), 649–663  mathnet  mathnet  crossref  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:374
    Full-text PDF :139
    References:48
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025