Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1983, Volume 54, Number 1, Pages 8–22 (Mi tmf4360)  

This article is cited in 15 scientific papers (total in 17 papers)

A statistical physics model

V. S. Vladimirov, I. V. Volovich
References:
Abstract: A Gaussian model on a half-axis with interaction given by a Toeptitz form is considered. The free energy and correlation functions are calculated. A new method of inverting Toeplitz matrices and solving the generalized Wiener-Hopf problem is used. The asymptotic behavior of the correlation functions is studied and the conditions for the presence or absence of long-range order are established. The free energyand correlation functions are calculated for a Gaussian model with external field. An expression is obtained for the free energy of a multidimensional Gaussian model.
Received: 07.07.1982
English version:
Theoretical and Mathematical Physics, 1983, Volume 54, Issue 1, Pages 1–12
DOI: https://doi.org/10.1007/BF01017118
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. S. Vladimirov, I. V. Volovich, “A statistical physics model”, TMF, 54:1 (1983), 8–22; Theoret. and Math. Phys., 54:1 (1983), 1–12
Citation in format AMSBIB
\Bibitem{VlaVol83}
\by V.~S.~Vladimirov, I.~V.~Volovich
\paper A~statistical physics model
\jour TMF
\yr 1983
\vol 54
\issue 1
\pages 8--22
\mathnet{http://mi.mathnet.ru/tmf4360}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=704006}
\transl
\jour Theoret. and Math. Phys.
\yr 1983
\vol 54
\issue 1
\pages 1--12
\crossref{https://doi.org/10.1007/BF01017118}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1983RF77900001}
Linking options:
  • https://www.mathnet.ru/eng/tmf4360
  • https://www.mathnet.ru/eng/tmf/v54/i1/p8
  • This publication is cited in the following 17 articles:
    1. M. K. Kerimov, “Vasiliĭ Sergeevich Vladimirov (on the occasion of his eightieth birthday)”, Comput. Math. Math. Phys., 43:11 (2003), 1541–1549  mathnet  mathscinet
    2. Bernd Silbermann, Singular Integral Operators and Related Topics, 1996, 295  crossref
    3. A.E. Frazho, P.J. Sherman, “On the convergence of the minimum variance spectral estimator in nonstationary noise”, IEEE Trans. Inform. Theory, 37:5 (1991), 1457  crossref
    4. A.E. Frazho, P.J. Sherman, “On the convergence of the multichannel maximum likelihood point spectrum estimator”, IEEE Trans. Signal Process., 39:5 (1991), 1210  crossref
    5. A.E. Frazho, P.J. Sherman, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing, 1991, 3141  crossref
    6. V. B. Dybin, “The Wiener–Hopf equation and Blaschke products”, Math. USSR-Sb., 70:1 (1991), 205–230  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    7. A. L. Sakhnovich, “Spectral functions of a canonical system of order 2n”, Math. USSR-Sb., 71:2 (1992), 355–369  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    8. N.S. Gonchar, “Correlation functions of some continuous model systems and description of phase transitions”, Physics Reports, 172:5 (1989), 175  crossref
    9. V. S. Vladimirov, “Wiener-Hopf equation on the semi-axis in the Nevanlinna and Smirnov algebras”, J. Soviet Math., 63:2 (1993), 149–158  mathnet  mathnet  crossref
    10. V. M. Adamyan, “Some limit relations for multidimensional positive-definite toeplitz matrices”, Funct. Anal. Appl., 22:1 (1988), 44–45  mathnet  crossref  mathscinet  zmath  isi
    11. V. S. Vladimirov, Generalized Functions, Convergence Structures, and Their Applications, 1988, 83  crossref
    12. A. L. Sakhnovich, “On a class of extremal problems”, Math. USSR-Izv., 30:2 (1988), 411–418  mathnet  crossref  mathscinet  zmath
    13. V. S. Vladimirov, “The Wiener–Hopf equation in Nevanlinna and Smirnov algebras”, Math. USSR-Izv., 31:1 (1988), 77–94  mathnet  crossref  mathscinet  zmath
    14. A. L. Sakhnovich, I. M. Spitkovsky, “Block-Toeplitz matrices and associated properties of a Gaussian model on a half-axis”, Theoret. and Math. Phys., 63:1 (1985), 427–431  mathnet  crossref  mathscinet  zmath  isi
    15. N. K. Fazlutdinov, “One-dimensional lattice models with nonsummable interaction”, Theoret. and Math. Phys., 63:2 (1985), 535–538  mathnet  crossref  mathscinet  isi
    16. N. S. Gonchar, “Solvability of a class of systems of infinite-dimensional integral equations and their application in statistical mechanics”, Theoret. and Math. Phys., 64:3 (1985), 949–959  mathnet  crossref  mathscinet  isi
    17. N. N. Bogolyubov, A. A. Logunov, G. I. Marchuk, “Vasilii Sergeevich Vladimirov (on his sixtieth birthday)”, Russian Math. Surveys, 38:1 (1983), 231–243  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:696
    Full-text PDF :187
    References:80
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025