Abstract:
We show that in contrast to po(2n|m), its quotient modulo center, the Lie superalgebra h(2n|m) of Hamiltonian vector fields with polynomial coefficients, has exceptional additional deformations for (2n|m)=(2|2) and only for this superdimension. We relate this result to the complete description of deformations of the antibracket (also called the Schouten or Buttin bracket). It turns out that the space in which the deformed Lie algebra (result of quantizing the Poisson algebra) acts coincides with the simplest space in which the Lie algebra of commutation relations acts. This coincidence is not necessary for Lie superalgebras.
Citation:
D. A. Leites, I. M. Shchepochkina, “How to Quantize the Antibracket”, TMF, 126:3 (2001), 339–369; Theoret. and Math. Phys., 126:3 (2001), 281–306
This publication is cited in the following 30 articles:
Sofiane Bouarroudj, Pavel Grozman, Dimitry Leites, “Deformations of Symmetric Simple Modular Lie (Super)Algebras”, SIGMA, 19 (2023), 031, 66 pp.
Sofiane Bouarroudj, Pavel Grozman, Alexei Lebedev, Dimitry Leites, Irina Shchepochkina, “Simple Vectorial Lie Algebras in Characteristic 2 and their Superizations”, SIGMA, 16 (2020), 089, 101 pp.
D. A. Leites, “Two problems in the theory of differential equations”, Theoret. and Math. Phys., 198:2 (2019), 271–283
Bouarroudj S., Leites D., “Invariant Differential Operators in Positive Characteristic”, J. Algebra, 499 (2018), 281–297
Bouarroudj S., Krutov A., Leites D., Shchepochkina I., “Non-Degenerate Invariant (Super)Symmetric Bilinear Forms on Simple Lie (Super)Algebras”, Algebr. Represent. Theory, 21:5 (2018), 897–941
S. E. Konstein, I. V. Tyutin, “Deformations of the antibracket with Grassmann-valued deformation parameters”, Theoret. and Math. Phys., 183:1 (2015), 501–515
Batalin I.A., Lavrov P.M., “Extended SIGMA-Model in Nontrivially Deformed Field-Antifield Formalism”, Mod. Phys. Lett. A, 30:29 (2015), 1550141
Igor A. Batalin, Peter M. Lavrov, “Does the nontrivially deformed field–antifield formalism exist?”, Int. J. Mod. Phys. A, 30:16 (2015), 1550090
S. Bouarroudj, A. V. Lebedev, F. Vagemann, “Deformations of the Lie Algebra o(5) in Characteristics 3 and 2”, Math. Notes, 89:6 (2011), 777–791
Lebedev A., “Analogs of the Orthogonal, Hamiltonian, Poisson, and Contact Lie Superalgebras in Characteristic 2”, J Nonlinear Math Phys, 17, Suppl. 1 (2010), 217–251
Iyer U.N., Leites D., Messaoudene M., Shchepochkina I., “Examples of Simple Vectorial Lie Algebras in Characteristic 2”, J Nonlinear Math Phys, 17, Suppl. 1 (2010), 311–374
Batalin I.A., Bering K., “Path integral formulation with deformed antibracket”, Phys Lett B, 694:2 (2010), 158–166
Popowicz Z., “Does the supersymmetric integrability imply the integrability of Bosonic sector”, Nonlinear and Modern Mathematical Physics, AIP Conference Proceedings, 1212, 2010, 50–57
S. E. Konstein, A. G. Smirnov, I. V. Tyutin, “Hochschild cohomologies and deformations of the pointwise superproduct”, Theoret. and Math. Phys., 158:3 (2009), 271–292
Sofiane Bouarroudj, Pavel Grozman, Dimitry Leites, “Classification of Finite Dimensional Modular Lie Superalgebras with Indecomposable Cartan Matrix”, SIGMA, 5 (2009), 060, 63 pp.
Popowicz, Z, “Odd Hamiltonian structure for supersymmetric Sawada-Kotera equation”, Physics Letters A, 373:37 (2009), 3315
S. E. Konstein, I. V. Tyutin, “Deformations of the nondegenerate constant Poisson bracket and
antibracket on superspaces of an arbitrary superdimension”, Theoret. and Math. Phys., 155:1 (2008), 598–605
S. E. Konstein, I. V. Tyutin, “General form of the deformation of the Poisson superbracket on a (2,n)-dimensional superspace”, Theoret. and Math. Phys., 155:2 (2008), 734–753
Konstein, SE, “Deformations and central extensions of the antibracket superalgebra”, Journal of Mathematical Physics, 49:7 (2008), 072103
S. E. Konstein, A. G. Smirnov, I. V. Tyutin, “General form of the deformation of the Poisson superbracket”, Theoret. and Math. Phys., 148:2 (2006), 1011–1024