Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2001, Volume 126, Number 3, Pages 339–369
DOI: https://doi.org/10.4213/tmf435
(Mi tmf435)
 

This article is cited in 30 scientific papers (total in 30 papers)

How to Quantize the Antibracket

D. A. Leitesa, I. M. Shchepochkinab

a Stockholm University
b Independent University of Moscow
References:
Abstract: We show that in contrast to $\mathfrak{po}(2n|m)$, its quotient modulo center, the Lie superalgebra $\mathfrak{h}(2n|m)$ of Hamiltonian vector fields with polynomial coefficients, has exceptional additional deformations for $(2n|m)=(2|2)$ and only for this superdimension. We relate this result to the complete description of deformations of the antibracket (also called the Schouten or Buttin bracket). It turns out that the space in which the deformed Lie algebra (result of quantizing the Poisson algebra) acts coincides with the simplest space in which the Lie algebra of commutation relations acts. This coincidence is not necessary for Lie superalgebras.
Received: 08.04.2000
Revised: 02.10.2000
English version:
Theoretical and Mathematical Physics, 2001, Volume 126, Issue 3, Pages 281–306
DOI: https://doi.org/10.1023/A:1010312700129
Bibliographic databases:
Language: Russian
Citation: D. A. Leites, I. M. Shchepochkina, “How to Quantize the Antibracket”, TMF, 126:3 (2001), 339–369; Theoret. and Math. Phys., 126:3 (2001), 281–306
Citation in format AMSBIB
\Bibitem{LeiShc01}
\by D.~A.~Leites, I.~M.~Shchepochkina
\paper How to Quantize the Antibracket
\jour TMF
\yr 2001
\vol 126
\issue 3
\pages 339--369
\mathnet{http://mi.mathnet.ru/tmf435}
\crossref{https://doi.org/10.4213/tmf435}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1863910}
\zmath{https://zbmath.org/?q=an:1039.17025}
\elib{https://elibrary.ru/item.asp?id=13383702}
\transl
\jour Theoret. and Math. Phys.
\yr 2001
\vol 126
\issue 3
\pages 281--306
\crossref{https://doi.org/10.1023/A:1010312700129}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000170328400001}
Linking options:
  • https://www.mathnet.ru/eng/tmf435
  • https://doi.org/10.4213/tmf435
  • https://www.mathnet.ru/eng/tmf/v126/i3/p339
  • This publication is cited in the following 30 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024