Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2001, Volume 126, Number 3, Pages 339–369
DOI: https://doi.org/10.4213/tmf435
(Mi tmf435)
 

This article is cited in 30 scientific papers (total in 30 papers)

How to Quantize the Antibracket

D. A. Leitesa, I. M. Shchepochkinab

a Stockholm University
b Independent University of Moscow
References:
Abstract: We show that in contrast to po(2n|m), its quotient modulo center, the Lie superalgebra h(2n|m) of Hamiltonian vector fields with polynomial coefficients, has exceptional additional deformations for (2n|m)=(2|2) and only for this superdimension. We relate this result to the complete description of deformations of the antibracket (also called the Schouten or Buttin bracket). It turns out that the space in which the deformed Lie algebra (result of quantizing the Poisson algebra) acts coincides with the simplest space in which the Lie algebra of commutation relations acts. This coincidence is not necessary for Lie superalgebras.
Received: 08.04.2000
Revised: 02.10.2000
English version:
Theoretical and Mathematical Physics, 2001, Volume 126, Issue 3, Pages 281–306
DOI: https://doi.org/10.1023/A:1010312700129
Bibliographic databases:
Language: Russian
Citation: D. A. Leites, I. M. Shchepochkina, “How to Quantize the Antibracket”, TMF, 126:3 (2001), 339–369; Theoret. and Math. Phys., 126:3 (2001), 281–306
Citation in format AMSBIB
\Bibitem{LeiShc01}
\by D.~A.~Leites, I.~M.~Shchepochkina
\paper How to Quantize the Antibracket
\jour TMF
\yr 2001
\vol 126
\issue 3
\pages 339--369
\mathnet{http://mi.mathnet.ru/tmf435}
\crossref{https://doi.org/10.4213/tmf435}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1863910}
\zmath{https://zbmath.org/?q=an:1039.17025}
\elib{https://elibrary.ru/item.asp?id=13383702}
\transl
\jour Theoret. and Math. Phys.
\yr 2001
\vol 126
\issue 3
\pages 281--306
\crossref{https://doi.org/10.1023/A:1010312700129}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000170328400001}
Linking options:
  • https://www.mathnet.ru/eng/tmf435
  • https://doi.org/10.4213/tmf435
  • https://www.mathnet.ru/eng/tmf/v126/i3/p339
  • This publication is cited in the following 30 articles:
    1. Sofiane Bouarroudj, Pavel Grozman, Dimitry Leites, “Deformations of Symmetric Simple Modular Lie (Super)Algebras”, SIGMA, 19 (2023), 031, 66 pp.  mathnet  crossref  mathscinet
    2. Sofiane Bouarroudj, Pavel Grozman, Alexei Lebedev, Dimitry Leites, Irina Shchepochkina, “Simple Vectorial Lie Algebras in Characteristic 2 and their Superizations”, SIGMA, 16 (2020), 089, 101 pp.  mathnet  crossref
    3. D. A. Leites, “Two problems in the theory of differential equations”, Theoret. and Math. Phys., 198:2 (2019), 271–283  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    4. Bouarroudj S., Leites D., “Invariant Differential Operators in Positive Characteristic”, J. Algebra, 499 (2018), 281–297  crossref  mathscinet  zmath  isi  scopus
    5. Bouarroudj S., Krutov A., Leites D., Shchepochkina I., “Non-Degenerate Invariant (Super)Symmetric Bilinear Forms on Simple Lie (Super)Algebras”, Algebr. Represent. Theory, 21:5 (2018), 897–941  crossref  mathscinet  zmath  isi  scopus
    6. S. E. Konstein, I. V. Tyutin, “Deformations of the antibracket with Grassmann-valued deformation parameters”, Theoret. and Math. Phys., 183:1 (2015), 501–515  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    7. Batalin I.A., Lavrov P.M., “Extended SIGMA-Model in Nontrivially Deformed Field-Antifield Formalism”, Mod. Phys. Lett. A, 30:29 (2015), 1550141  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    8. Igor A. Batalin, Peter M. Lavrov, “Does the nontrivially deformed field–antifield formalism exist?”, Int. J. Mod. Phys. A, 30:16 (2015), 1550090  crossref
    9. S. Bouarroudj, A. V. Lebedev, F. Vagemann, “Deformations of the Lie Algebra o(5) in Characteristics 3 and 2”, Math. Notes, 89:6 (2011), 777–791  mathnet  crossref  crossref  mathscinet  isi
    10. Lebedev A., “Analogs of the Orthogonal, Hamiltonian, Poisson, and Contact Lie Superalgebras in Characteristic 2”, J Nonlinear Math Phys, 17, Suppl. 1 (2010), 217–251  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    11. Iyer U.N., Leites D., Messaoudene M., Shchepochkina I., “Examples of Simple Vectorial Lie Algebras in Characteristic 2”, J Nonlinear Math Phys, 17, Suppl. 1 (2010), 311–374  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    12. Batalin I.A., Bering K., “Path integral formulation with deformed antibracket”, Phys Lett B, 694:2 (2010), 158–166  crossref  mathscinet  adsnasa  isi  elib  scopus  scopus
    13. Popowicz Z., “Does the supersymmetric integrability imply the integrability of Bosonic sector”, Nonlinear and Modern Mathematical Physics, AIP Conference Proceedings, 1212, 2010, 50–57  crossref  mathscinet  zmath  isi  scopus  scopus
    14. S. E. Konstein, A. G. Smirnov, I. V. Tyutin, “Hochschild cohomologies and deformations of the pointwise superproduct”, Theoret. and Math. Phys., 158:3 (2009), 271–292  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    15. Sofiane Bouarroudj, Pavel Grozman, Dimitry Leites, “Classification of Finite Dimensional Modular Lie Superalgebras with Indecomposable Cartan Matrix”, SIGMA, 5 (2009), 060, 63 pp.  mathnet  crossref  mathscinet
    16. Popowicz, Z, “Odd Hamiltonian structure for supersymmetric Sawada-Kotera equation”, Physics Letters A, 373:37 (2009), 3315  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    17. S. E. Konstein, I. V. Tyutin, “Deformations of the nondegenerate constant Poisson bracket and antibracket on superspaces of an arbitrary superdimension”, Theoret. and Math. Phys., 155:1 (2008), 598–605  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    18. S. E. Konstein, I. V. Tyutin, “General form of the deformation of the Poisson superbracket on a (2,n)-dimensional superspace”, Theoret. and Math. Phys., 155:2 (2008), 734–753  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    19. Konstein, SE, “Deformations and central extensions of the antibracket superalgebra”, Journal of Mathematical Physics, 49:7 (2008), 072103  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    20. S. E. Konstein, A. G. Smirnov, I. V. Tyutin, “General form of the deformation of the Poisson superbracket”, Theoret. and Math. Phys., 148:2 (2006), 1011–1024  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:757
    Full-text PDF :322
    References:120
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025