Abstract:
It is shown that the Liouville equation u+−=m2e−2uu+−=m2e−2u has an
adequate description in the language of the nonlinear realization
of the infinite-parameter conformal group GG in two dimensions.
The coordinates x+x+, x−x− of the two-dimensional Minkowski
space and the field u(x)u(x) are identified with certain parameters
of the factor space G/HG/H, where H=SO(1,1)H=SO(1,1) is the Lorentz group
in two dimensions. The Liouville equation arises as one of the
covariant conditions of reduction of the factor space G/HG/H to its
connected geodesic subspace SL(2,R)/HSL(2,R)/H. The alternative reduction
to the subspace P(1,1)/H where P(1,1) is
the two-dimensional Poincaré group, leads to the free equation
for u(x). The corresponding representations of zero curvature
and B cklund transformations acquire in the present approach a
simple group-theoretical meaning. The possibility of generalizing
the proposed construction to other integrable systems is
discussed.
Citation:
E. A. Ivanov, S. O. Krivonos, “Nonlinear realization of the conformal group in two dimensions and the Liouville equation”, TMF, 58:2 (1984), 200–212; Theoret. and Math. Phys., 58:2 (1984), 131–140
\Bibitem{IvaKri84}
\by E.~A.~Ivanov, S.~O.~Krivonos
\paper Nonlinear realization of the conformal group in two dimensions and the Liouville equation
\jour TMF
\yr 1984
\vol 58
\issue 2
\pages 200--212
\mathnet{http://mi.mathnet.ru/tmf4327}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=743406}
\zmath{https://zbmath.org/?q=an:0545.35088}
\transl
\jour Theoret. and Math. Phys.
\yr 1984
\vol 58
\issue 2
\pages 131--140
\crossref{https://doi.org/10.1007/BF01017917}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1984TG27600005}
Linking options:
https://www.mathnet.ru/eng/tmf4327
https://www.mathnet.ru/eng/tmf/v58/i2/p200
This publication is cited in the following 7 articles:
Stanislav Alexeyev, Daniil Krichevskiy, Boris Latosh, “Gravity Models with Nonlinear Symmetry Realization”, Universe, 7:12 (2021), 501
I. Bandos, E. Ivanov, A. A. Kapustnikov, S. A. Ulanov, “General solution of string inspired nonlinear equations”, Journal of Mathematical Physics, 40:10 (1999), 5203
S. Bellucci, V. Gribanov, S. Krivonos, A. Pashnev, “Nonlinear realizations of the W(2)3 algebra”, Physics Letters A, 191:3-4 (1994), 216
E. Ivanov, S. Krivonos, A. Pichugin, “Nonlinear realizations of W3 symmetry”, Physics Letters B, 284:3-4 (1992), 260
E. Ivanov, S. Krivonos, “Superfield realizations of N=2 super-W3”, Physics Letters B, 291:1-2 (1992), 63
E. A. Ivanov, S. O. Krivonos, “Bäcklund transformations for superextensions of the Liouville equation”, Theoret. and Math. Phys., 66:1 (1986), 60–68
E. A. Ivanov, S. O. Krivonos, “N=4 superextension of the Liouville equation with quaternion structure”, Theoret. and Math. Phys., 63:2 (1985), 477–486