Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2001, Volume 126, Number 2, Pages 301–310
DOI: https://doi.org/10.4213/tmf432
(Mi tmf432)
 

A partition function representation through Grassmann variables

L. F. Blazhievskii

Ivan Franko National University of L'viv
References:
Abstract: We propose a formula for a classical partition function $Z_N$ that does not involve the Hamilton function of the system. In the general case, we avoid passing to canonical variables $(\mathbf p,\mathbf x)$ at the price of extending the space of Lagrange variables $(\mathbf v,\mathbf x)$ by introducing “additional velocities” $\bar{\mathbf u},\mathbf u$, which are the generators of a Grassmann algebra. In this space, the partition function $Z_N$ is the integral of a Gibbs-type distribution, whose explicit form is determined by the system Lagrange function. We calculate the partition function of a model system governed by the Darwin Lagrange function.
Received: 18.04.2000
Revised: 10.08.2000
English version:
Theoretical and Mathematical Physics, 2001, Volume 126, Issue 2, Pages 250–257
DOI: https://doi.org/10.1023/A:1005256013273
Bibliographic databases:
Language: Russian
Citation: L. F. Blazhievskii, “A partition function representation through Grassmann variables”, TMF, 126:2 (2001), 301–310; Theoret. and Math. Phys., 126:2 (2001), 250–257
Citation in format AMSBIB
\Bibitem{Bla01}
\by L.~F.~Blazhievskii
\paper A partition function representation through Grassmann variables
\jour TMF
\yr 2001
\vol 126
\issue 2
\pages 301--310
\mathnet{http://mi.mathnet.ru/tmf432}
\crossref{https://doi.org/10.4213/tmf432}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1863087}
\zmath{https://zbmath.org/?q=an:0993.82004}
\transl
\jour Theoret. and Math. Phys.
\yr 2001
\vol 126
\issue 2
\pages 250--257
\crossref{https://doi.org/10.1023/A:1005256013273}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000170245600011}
Linking options:
  • https://www.mathnet.ru/eng/tmf432
  • https://doi.org/10.4213/tmf432
  • https://www.mathnet.ru/eng/tmf/v126/i2/p301
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:417
    Full-text PDF :207
    References:72
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024