Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1978, Volume 36, Number 2, Pages 208–223 (Mi tmf4301)  

This article is cited in 13 scientific papers (total in 13 papers)

Self-consistent theory of electron correlation in the Hubbard model

A. L. Kuzemsky
References:
Abstract: The Dyson equation for the two-time thermal Green's functions is used for a self-consistent calculation of the single-particle Green's functions in the Hubbard model. The method makes it possible to obtain a generalized interpolation solution of the Hubbard model valid for arbitrary relationship between the effective band width and the Coulomb repulsion parameter. Two variants of the theory make it possible to obtain two exact representations for the mass operator, which are used to obtain approximate solutions in the atomic and band limits.
Received: 21.06.1977
English version:
Theoretical and Mathematical Physics, 1978, Volume 36, Issue 2, Pages 692–702
DOI: https://doi.org/10.1007/BF01036482
Language: Russian
Citation: A. L. Kuzemsky, “Self-consistent theory of electron correlation in the Hubbard model”, TMF, 36:2 (1978), 208–223; Theoret. and Math. Phys., 36:2 (1978), 692–702
Citation in format AMSBIB
\Bibitem{Kuz78}
\by A.~L.~Kuzemsky
\paper Self-consistent theory of electron correlation in the Hubbard model
\jour TMF
\yr 1978
\vol 36
\issue 2
\pages 208--223
\mathnet{http://mi.mathnet.ru/tmf4301}
\transl
\jour Theoret. and Math. Phys.
\yr 1978
\vol 36
\issue 2
\pages 692--702
\crossref{https://doi.org/10.1007/BF01036482}
Linking options:
  • https://www.mathnet.ru/eng/tmf4301
  • https://www.mathnet.ru/eng/tmf/v36/i2/p208
  • This publication is cited in the following 13 articles:
    1. A. L. Kuzemsky, “Variational principle of Bogoliubov and generalized mean fields in many-particle interacting systems”, Int. J. Mod. Phys. B, 29:18 (2015), 1530010  crossref
    2. Chechulin V.L., “K periodizatsii istorii fiziki”, Vestnik permskogo universiteta. seriya: matematika. mekhanika. informatika, 2012, no. 4, 110–121  elib
    3. Kuzemsky A.L., “Quasiaverages, symmetry breaking and irreducible Green functions method”, Condensed Matter Physics, 13:4 (2010), 43001  crossref  isi
    4. A. L. Kuzemsky, “Works by D. I. Blokhintsev and the development of quantum physics”, Phys. Part. Nuclei, 39:2 (2008), 137  crossref
    5. A.L. Kuzemsky, J.C. Parlebas, H. Beck, “Non-local correlations and quasiparticle interactions in the Anderson model”, Physica A: Statistical Mechanics and its Applications, 198:3-4 (1993), 606  crossref
    6. Chan Minh Tien, “Electron-phonon superconductivity mechanisms in the Hubbard model”, Theoret. and Math. Phys., 91:3 (1992), 650–657  mathnet  crossref  mathscinet  isi
    7. Alexander L. Kuzemsky, “Interpolation solution of the single-impurity Anderson model”, Physics Letters A, 153:8-9 (1991), 466  crossref
    8. V. I. Inozemtsev, A. L. Kuzemsky, “Exact solution of the one-dimensional fermion system on a lattice”, Phys. Rev. B, 43:1 (1991), 1090  crossref
    9. A. L. Kuzemsky, D. Marvakov, “Excitation spectrum of Heisenberg antiferromagnet at finite temperatures”, Theoret. and Math. Phys., 83:1 (1990), 441–448  mathnet  crossref  isi
    10. D.I. Marvakov, A.L. Kuzemsky, J.P. Vlahov, “A self-consistent theory of the magnetic polaron”, Physica B+C, 138:1-2 (1986), 129  crossref
    11. R. O. Zaitsev, E. V. Kuz'min, S. G. Ovchinnikov, “Fundamental ideas on metal-dielectric transitions in 3d-metal compounds”, Phys. Usp., 29:4 (1986), 322–342  mathnet  mathnet  crossref  crossref
    12. A. V. Vedyaev, V. A. Ivanov, “Elementary excitations in the Hubbard model”, Theoret. and Math. Phys., 50:3 (1982), 273–276  mathnet  crossref  isi
    13. G. M. Vuiichich, A. L. Kuzemsky, N. M. Plakida, “Equations of superconductivity for transition metals in the Wannier representation”, Theoret. and Math. Phys., 53:1 (1982), 1035–1040  mathnet  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:497
    Full-text PDF :146
    References:58
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025