Abstract:
We study singular points and symmetries of the renormalization group mapping in a fermionic hierarchical model. This mapping taken at the renormalization group singular point and with the renormalization group parameter $\alpha=1$ generates cycles of arbitrary lengths.
Citation:
R. Z. Dautov, M. D. Missarov, “Symmetries and cycles of the renormalization group in a fermionic hierarchical model”, TMF, 126:2 (2001), 238–246; Theoret. and Math. Phys., 126:2 (2001), 195–202
\Bibitem{DauMis01}
\by R.~Z.~Dautov, M.~D.~Missarov
\paper Symmetries and cycles of the renormalization group in a fermionic hierarchical model
\jour TMF
\yr 2001
\vol 126
\issue 2
\pages 238--246
\mathnet{http://mi.mathnet.ru/tmf428}
\crossref{https://doi.org/10.4213/tmf428}
\zmath{https://zbmath.org/?q=an:0993.81036}
\transl
\jour Theoret. and Math. Phys.
\yr 2001
\vol 126
\issue 2
\pages 195--202
\crossref{https://doi.org/10.1023/A:1005295727386}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000170245600006}
Linking options:
https://www.mathnet.ru/eng/tmf428
https://doi.org/10.4213/tmf428
https://www.mathnet.ru/eng/tmf/v126/i2/p238
This publication is cited in the following 1 articles:
R. G. Stepanov, “Renormalization-Group Transformation in a $2n$-Component Fermionic Hierarchical Model”, Theoret. and Math. Phys., 146:2 (2006), 207–220