Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1976, Volume 28, Number 3, Pages 371–380 (Mi tmf4273)  

This article is cited in 15 scientific papers (total in 15 papers)

Construction of an exact solution of the Dyson equation for the mean value of the Green's function

O. V. Muzychuk
References:
Abstract: A solution is found for the mean value of the Green's function of a stochastic linear system of general form with Gaussian fluctuating parameters. The method is based on constructing higher approximations of the Dyson equation by closing the chains of equations for the mean values of the variational derivatives of the solution at a certain step. It is shown that for the case of exponentially correlated fluctuations of the parameters of the system, the exact solution of the Dyson equation can be represented as an infinite continued fraction. The results are illustrated by the finding of the dynamical characteristics of an harmonic oscillator which has fluctuations of the eigenfrequency and the losses.
Received: 06.10.1975
English version:
Theoretical and Mathematical Physics, 1976, Volume 28, Issue 3, Pages 851–857
DOI: https://doi.org/10.1007/BF01029178
Bibliographic databases:
Language: Russian
Citation: O. V. Muzychuk, “Construction of an exact solution of the Dyson equation for the mean value of the Green's function”, TMF, 28:3 (1976), 371–380; Theoret. and Math. Phys., 28:3 (1976), 851–857
Citation in format AMSBIB
\Bibitem{Muz76}
\by O.~V.~Muzychuk
\paper Construction of an exact solution of the Dyson equation for the mean value of the Green's function
\jour TMF
\yr 1976
\vol 28
\issue 3
\pages 371--380
\mathnet{http://mi.mathnet.ru/tmf4273}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=449269}
\transl
\jour Theoret. and Math. Phys.
\yr 1976
\vol 28
\issue 3
\pages 851--857
\crossref{https://doi.org/10.1007/BF01029178}
Linking options:
  • https://www.mathnet.ru/eng/tmf4273
  • https://www.mathnet.ru/eng/tmf/v28/i3/p371
  • This publication is cited in the following 15 articles:
    1. Alexander A. Dubkov, “Statistical time-reversal symmetry and its physical applications”, Chemical Physics, 375:2-3 (2010), 364  crossref
    2. O. V. Muzychuk, “Effective frequency characteristic of a linear system with intensive nonwhite fluctuations of parameters”, Radiophys Quantum Electron, 33:3 (1990), 237  crossref
    3. R. V. Bobrik, “Hierarchies of moment equations for the solution of the Schrödinger equation with random potential and their closure”, Theoret. and Math. Phys., 68:2 (1986), 841–847  mathnet  crossref  mathscinet  zmath  isi
    4. U. Behn, “Tight Binding Quasiparticle Motion in a Poisson cOrrelated Discrete Stochastic Potential. The Density of States”, Physica Status Solidi (b), 113:1 (1982), 219  crossref
    5. Yu. N. Barabanenkov, M. I. Kalinin, “Application of an undecoupled Dyson-type equation for estimating the error of the one-group approximation in the theory of conservative stochastic linear dynamical systems”, Radiophys Quantum Electron, 25:6 (1982), 459  crossref
    6. G. N. Bochkov, A. A. Dubkov, “Functional statistical analysis of non-Gaussian parametric systems. I”, Radiophys Quantum Electron, 24:12 (1981), 996  crossref
    7. G. I. Babkin, V. I. Klyatskin, “Analysis of the Dyson equation for stochastic integral equations”, Theoret. and Math. Phys., 41:3 (1979), 1080–1086  mathnet  crossref  mathscinet  isi
    8. L. A. Apresyan, “Pade approximants (review)”, Radiophys Quantum Electron, 22:6 (1979), 449  crossref
    9. O. V. Muzychuk, “Statistical description of linear systems with parameter fluctuations which are not delta-correlated”, Radiophys Quantum Electron, 22:10 (1979), 863  crossref
    10. V. I. Klyatskin, “Markov processes, correlations of functionals, and stochastic equations”, Radiophys Quantum Electron, 22:6 (1979), 495  crossref
    11. S. E. Pitovranov, V. N. Chetverikov, “Corrections to the diffusion approximation in stochastic differential equations”, Theoret. and Math. Phys., 35:2 (1978), 415–422  mathnet  crossref  mathscinet  zmath
    12. O. V. Muzychuk, “Statistical means in dynamic systems with a certain type of non-Gaussian parameter fluctuations”, Radiophys Quantum Electron, 21:2 (1978), 148  crossref
    13. A. N. Malakhov, O. V. Muzychuk, I. E. Pozumentov, “Differential description of stochastic linear systems with nonwhite parameter fluctuations”, Radiophys Quantum Electron, 21:9 (1978), 887  crossref
    14. A. N. Malakhov, O. V. Muzychuk, “Moment and cumulant functions of stochastic linear systems”, Radiophys Quantum Electron, 21:1 (1978), 47  crossref
    15. A. A. Dubkov, O. V. Muzychuk, “Analysis of higher approximations of Dyson's equation for the mean value of the Green function”, Radiophys Quantum Electron, 20:6 (1977), 623  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:389
    Full-text PDF :151
    References:59
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025