Abstract:
For a Schrödinger operator with a periodic potential perturbed by a function periodic with respect to two variables and tending to zero with respect to the third variable, conditions are found under which a level (eigenvalue or resonance) falls on a zone boundary. The passage of the level through the boundary under variation of the perturbation magnitude is discussed.
Citation:
Yu. P. Chuburin, “Schrödinger operator eigenvalue (resonance) on a zone boundary”, TMF, 126:2 (2001), 196–205; Theoret. and Math. Phys., 126:2 (2001), 161–168
This publication is cited in the following 6 articles:
M. S. Smetanina, “Asimptotika urovnei operatora Shrëdingera dlya kristallicheskoi plenki s nelokalnym potentsialom”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 28:4 (2018), 462–473
Yu. P. Chuburin, “Perturbation Theory of Resonances and Embedded Eigenvalues of the Schrodinger Operator For a Crystal Film”, Theoret. and Math. Phys., 143:3 (2005), 836–847
N. I. Pletnikova, “Ob urovnyakh operatora Shredingera na granitse nepreryvnogo spektra”, Izv. IMI UdGU, 2005, no. 1(31), 107–112
Chuburin, YP, “On levels of a weakly perturbed periodic Schrodinger operator”, Communications in Mathematical Physics, 249:3 (2004), 497
Yu. P. Chuburin, “The Spectrum and Eigenfunctions of the Two-Dimensional Schrödinger Operator with a Magnetic Field”, Theoret. and Math. Phys., 134:2 (2003), 212–221
M. S. Smetanina, “Ob uravnenii Shredingera s nelokalnym potentsialom”, Izv. IMI UdGU, 2002, no. 3(26), 99–114