Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2001, Volume 126, Number 2, Pages 196–205
DOI: https://doi.org/10.4213/tmf424
(Mi tmf424)
 

This article is cited in 6 scientific papers (total in 6 papers)

Schrödinger operator eigenvalue (resonance) on a zone boundary

Yu. P. Chuburin

Physical-Technical Institute of the Ural Branch of the Russian Academy of Sciences
Full-text PDF (219 kB) Citations (6)
References:
Abstract: For a Schrödinger operator with a periodic potential perturbed by a function periodic with respect to two variables and tending to zero with respect to the third variable, conditions are found under which a level (eigenvalue or resonance) falls on a zone boundary. The passage of the level through the boundary under variation of the perturbation magnitude is discussed.
Received: 17.01.2000
Revised: 18.08.2000
English version:
Theoretical and Mathematical Physics, 2001, Volume 126, Issue 2, Pages 161–168
DOI: https://doi.org/10.1023/A:1005287525569
Bibliographic databases:
Language: Russian
Citation: Yu. P. Chuburin, “Schrödinger operator eigenvalue (resonance) on a zone boundary”, TMF, 126:2 (2001), 196–205; Theoret. and Math. Phys., 126:2 (2001), 161–168
Citation in format AMSBIB
\Bibitem{Chu01}
\by Yu.~P.~Chuburin
\paper Schr\"odinger operator eigenvalue (resonance) on a zone boundary
\jour TMF
\yr 2001
\vol 126
\issue 2
\pages 196--205
\mathnet{http://mi.mathnet.ru/tmf424}
\crossref{https://doi.org/10.4213/tmf424}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1863080}
\zmath{https://zbmath.org/?q=an:1035.81019}
\transl
\jour Theoret. and Math. Phys.
\yr 2001
\vol 126
\issue 2
\pages 161--168
\crossref{https://doi.org/10.1023/A:1005287525569}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000170245600002}
Linking options:
  • https://www.mathnet.ru/eng/tmf424
  • https://doi.org/10.4213/tmf424
  • https://www.mathnet.ru/eng/tmf/v126/i2/p196
  • This publication is cited in the following 6 articles:
    1. M. S. Smetanina, “Asimptotika urovnei operatora Shrëdingera dlya kristallicheskoi plenki s nelokalnym potentsialom”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 28:4 (2018), 462–473  mathnet  crossref  elib
    2. Yu. P. Chuburin, “Perturbation Theory of Resonances and Embedded Eigenvalues of the Schrodinger Operator For a Crystal Film”, Theoret. and Math. Phys., 143:3 (2005), 836–847  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. N. I. Pletnikova, “Ob urovnyakh operatora Shredingera na granitse nepreryvnogo spektra”, Izv. IMI UdGU, 2005, no. 1(31), 107–112  mathnet
    4. Chuburin, YP, “On levels of a weakly perturbed periodic Schrodinger operator”, Communications in Mathematical Physics, 249:3 (2004), 497  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    5. Yu. P. Chuburin, “The Spectrum and Eigenfunctions of the Two-Dimensional Schrödinger Operator with a Magnetic Field”, Theoret. and Math. Phys., 134:2 (2003), 212–221  mathnet  crossref  crossref  mathscinet  zmath  isi
    6. M. S. Smetanina, “Ob uravnenii Shredingera s nelokalnym potentsialom”, Izv. IMI UdGU, 2002, no. 3(26), 99–114  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:529
    Full-text PDF :224
    References:92
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025