Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2006, Volume 149, Number 2, Pages 299–317
DOI: https://doi.org/10.4213/tmf4235
(Mi tmf4235)
 

This article is cited in 72 scientific papers (total in 72 papers)

Renyi entropy as a statistical entropy for complex systems

A. G. Bashkirov

Institute of Dynamics of Geospheres, Russian Academy of Sciences
References:
Abstract: To describe a complex system, we propose using the Renyi entropy depending on the parameter $q$ $(0<q\le1)$ and passing into the Gibbs–Shannon entropy at $q=1$. The maximum principle for the Renyi entropy yields a Renyi distribution that passes into the Gibbs canonical distribution at $q=1$. The thermodynamic entropy of the complex system is defined as the Renyi entropy for the Renyi distribution. In contrast to the usual entropy based on the Gibbs–Shannon entropy, the Renyi entropy increases as the distribution deviates from the Gibbs distribution {(}the deviation is estimated by the parameter $\eta=1$ – $q)$ and reaches its maximum at the maximum possible value $\eta_{\max}$. As this occurs, the Renyi distribution becomes a power-law distribution. The parameter $\eta$ can be regarded as an order parameter. At $\eta=0$, the derivative of the thermodynamic entropy with respect to $\eta$ exhibits a jump, which indicates a kind of phase transition into a more ordered state. The evolution of the system toward further order in this phase state is accompanied by an entropy gain. This means that in accordance with the second law of thermodynamics, a natural evolution in the direction of self-organization is preferable.
Keywords: Renyi entropy, complex system, self-organization, phase transition, power-law Zipf–Pareto distribution, second law of thermodynamics, direction of evolution.
Received: 12.01.2006
Revised: 16.06.2006
English version:
Theoretical and Mathematical Physics, 2006, Volume 149, Issue 2, Pages 1559–1573
DOI: https://doi.org/10.1007/s11232-006-0138-x
Bibliographic databases:
Language: Russian
Citation: A. G. Bashkirov, “Renyi entropy as a statistical entropy for complex systems”, TMF, 149:2 (2006), 299–317; Theoret. and Math. Phys., 149:2 (2006), 1559–1573
Citation in format AMSBIB
\Bibitem{Bas06}
\by A.~G.~Bashkirov
\paper Renyi entropy as a~statistical entropy for complex systems
\jour TMF
\yr 2006
\vol 149
\issue 2
\pages 299--317
\mathnet{http://mi.mathnet.ru/tmf4235}
\crossref{https://doi.org/10.4213/tmf4235}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2302867}
\zmath{https://zbmath.org/?q=an:1177.82013}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2006TMP...149.1559B}
\elib{https://elibrary.ru/item.asp?id=9296937}
\transl
\jour Theoret. and Math. Phys.
\yr 2006
\vol 149
\issue 2
\pages 1559--1573
\crossref{https://doi.org/10.1007/s11232-006-0138-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000242873600010}
\elib{https://elibrary.ru/item.asp?id=14631485}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33751303764}
Linking options:
  • https://www.mathnet.ru/eng/tmf4235
  • https://doi.org/10.4213/tmf4235
  • https://www.mathnet.ru/eng/tmf/v149/i2/p299
  • This publication is cited in the following 72 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:3067
    Full-text PDF :1489
    References:152
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024