Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2006, Volume 149, Number 2, Pages 262–280
DOI: https://doi.org/10.4213/tmf4233
(Mi tmf4233)
 

This article is cited in 11 scientific papers (total in 11 papers)

The method of exact diagonalization preserving the total spin and taking the point symmetry of the two-dimensional isotropic Heisenberg magnet into account

I. G. Bostrem, A. S. Ovchinnikov, V. E. Sinitsyn

Ural State University
References:
Abstract: We propose a double-pass method of exact diagonalization of a finite cluster on the base of functions that have a definite total spin and transform by a definite irreducible representation of the point symmetry group of the lattice. We also propose the method for approximating the energy spectrum in the thermodynamic limit using the spectrum of the surrounding states, which increases the calculation accuracy leaving the cluster size invariant. The algorithm details are extensively illustrated with an example of clusters of spin $1/2$ on a simple square lattice.
Keywords: Heisenberg model, exact diagonalization, cluster calculations, group theory, angular momentum theory, two-dimensional antiferromagnet.
Received: 17.04.2006
English version:
Theoretical and Mathematical Physics, 2006, Volume 149, Issue 2, Pages 1527–1544
DOI: https://doi.org/10.1007/s11232-006-0136-z
Bibliographic databases:
Language: Russian
Citation: I. G. Bostrem, A. S. Ovchinnikov, V. E. Sinitsyn, “The method of exact diagonalization preserving the total spin and taking the point symmetry of the two-dimensional isotropic Heisenberg magnet into account”, TMF, 149:2 (2006), 262–280; Theoret. and Math. Phys., 149:2 (2006), 1527–1544
Citation in format AMSBIB
\Bibitem{BosOvcSin06}
\by I.~G.~Bostrem, A.~S.~Ovchinnikov, V.~E.~Sinitsyn
\paper The~method of exact diagonalization preserving the~total spin and
taking the~point symmetry of the~two-dimensional isotropic Heisenberg
magnet into account
\jour TMF
\yr 2006
\vol 149
\issue 2
\pages 262--280
\mathnet{http://mi.mathnet.ru/tmf4233}
\crossref{https://doi.org/10.4213/tmf4233}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2302865}
\zmath{https://zbmath.org/?q=an:1177.82038}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2006TMP...149.1527B}
\elib{https://elibrary.ru/item.asp?id=9296935}
\transl
\jour Theoret. and Math. Phys.
\yr 2006
\vol 149
\issue 2
\pages 1527--1544
\crossref{https://doi.org/10.1007/s11232-006-0136-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000242873600008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33751289431}
Linking options:
  • https://www.mathnet.ru/eng/tmf4233
  • https://doi.org/10.4213/tmf4233
  • https://www.mathnet.ru/eng/tmf/v149/i2/p262
  • This publication is cited in the following 11 articles:
    1. Werner Dobrautz, Vamshi M. Katukuri, Nikolay A. Bogdanov, Daniel Kats, Giovanni Li Manni, Ali Alavi, “Combined unitary and symmetric group approach applied to low-dimensional Heisenberg spin systems”, Phys. Rev. B, 105:19 (2022)  crossref
    2. Seki K., Shirakawa T., Yunoki S., “Symmetry-Adapted Variational Quantum Eigensolver”, Phys. Rev. A, 101:5 (2020), 052340  crossref  mathscinet  isi
    3. Heitmann T., Schnack J., “Combined Use of Translational and Spin-Rotational Invariance For Spin Systems”, Phys. Rev. B, 99:13 (2019), 134405  crossref  isi  scopus
    4. Oliver Hanebaum, Jürgen Schnack, “Advanced finite-temperature Lanczos method for anisotropic spin systems”, Eur. Phys. J. B, 87:9 (2014)  crossref
    5. Schnack J., Ummethum J., “Advanced Quantum Methods for the Largest Magnetic Molecules”, Polyhedron, 66:SI (2013), 28–33  crossref  isi  scopus
    6. A. S. Ovchinnikov, I. G. Bostrem, Vl. E. Sinitsyn, “Cluster perturbation theory for spin Hamiltonians”, Theoret. and Math. Phys., 162:2 (2010), 179–187  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    7. Khamzin A.M., Nigmatullin R.R., “Magnetic properties of magnetoactive spin clusters”, Journal of Experimental and Theoretical Physics, 111:6 (2011), 1028–1038  crossref  mathscinet  adsnasa  isi  elib  scopus
    8. Schnalle R., Schnack J., “Calculating the energy spectra of magnetic molecules: application of real- and spin-space symmetries”, International Reviews in Physical Chemistry, 29:3 (2010), 403–452  crossref  isi  scopus
    9. Irene G. Bostrem, Alexander S. Ovchinnikov, Valentine E. Sinitsyn, “Application of Symmetry Methods to Low-Dimensional Heisenberg Magnets”, Symmetry, 2:2 (2010), 722  crossref
    10. Schnalle, R, “Numerically exact and approximate determination of energy eigenvalues for antiferromagnetic molecules using irreducible tensor operators and general point-group symmetries”, Physical Review B, 79:10 (2009), 104419  crossref  adsnasa  isi  elib  scopus
    11. Schnalle, R, “Approximate eigenvalue determination of geometrically frustrated magnetic molecules”, Condensed Matter Physics, 12:3 (2009), 331  crossref  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:704
    Full-text PDF :324
    References:80
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025