Abstract:
The method of spectral densities is formulated and the simplest approximations are found for systems of Fermi or Bose particles with a pair interaction. The method is illustrated by the solution of the Hubbard model and a model “pair Hamiltonian”. The spectrum of a system of interacting bosons is investigated in the simplest approximation.
Citation:
O. K. Kalashnikov, E. S. Fradkin, “Application of the spectral density method to systems with a pair interaction”, TMF, 5:3 (1970), 417–438; Theoret. and Math. Phys., 5:3 (1970), 1250–1264
\Bibitem{KalFra70}
\by O.~K.~Kalashnikov, E.~S.~Fradkin
\paper Application of the spectral density method to systems with a~pair interaction
\jour TMF
\yr 1970
\vol 5
\issue 3
\pages 417--438
\mathnet{http://mi.mathnet.ru/tmf4219}
\transl
\jour Theoret. and Math. Phys.
\yr 1970
\vol 5
\issue 3
\pages 1250--1264
\crossref{https://doi.org/10.1007/BF01035256}
Linking options:
https://www.mathnet.ru/eng/tmf4219
https://www.mathnet.ru/eng/tmf/v5/i3/p417
This publication is cited in the following 8 articles:
V. B. Bobrov, A. G. Zagorodny, S. A. Trigger, “Another approach for obtaining the excitation spectra in degenerate Bose gases with delta-shaped interaction potentials”, Low Temperature Physics, 43:3 (2017), 343
Viktor Bobrov, Sergey Trigger, Daniel Litinski, “Universality of the Phonon–Roton Spectrum in Liquids and Superfluidity of 4He”, Zeitschrift für Naturforschung A, 71:6 (2016), 565
Bobrov V.B. Zagorodny A.G. Trigger S.A., “Coulomb Interaction Potential and Bose–Einstein Condensate”, Low Temp. Phys., 41:11 (2015), 901–908
L. S. Campana, M. D'Ambrosio, L. De Cesaee, “Erratum to: On a self-consistent approach to a bose model near the criticality”, Lett. Nuovo Cimento, 32:2 (1981), 39
A. Caramico D'Auria, L. De Cesare, U. Esposito, F. Esposito, “Bogoliubov approximation as a second-order approximation in the spectral-density method.—II”, Nuov Cim A, 59:3 (1980), 351
L. S. Campana, A. Caramico D'auria, L. De Cesare, U. Esposito, “Bogolubov approximation as a second-order approximation in the spectral density method”, Lett. Nuovo Cimento, 26:10 (1979), 301
A. L. Kuzemsky, “Self-consistent theory of electron correlation in the Hubbard model”, Theoret. and Math. Phys., 36:2 (1978), 692–702
G. M. Gavrilenko, V. K. Fedyanin, “Approximation of the spectral density in Anderson's model”, Theoret. and Math. Phys., 25:1 (1975), 992–996