Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2001, Volume 126, Number 1, Pages 149–163
DOI: https://doi.org/10.4213/tmf421
(Mi tmf421)
 

This article is cited in 11 scientific papers (total in 11 papers)

Some Properties of Functional Integrals with Respect to the Bogoliubov Measure

D. P. Sankovich

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: We consider problems related to integration with respect to the Bogoliubov measure in the space of continuous functions and calculate some functional integrals with respect to this measure. Approximate formulas that are exact for functional polynomials of a given degree and also some formulas that are exact for integrable functionals belonging to a broader class are constructed. An inequality for traces is proved, and an upper estimate is derived for the Gibbs equilibrium mean square of the coordinate operator in the case of a one-dimensional nonlinear oscillator with a positive symmetric interaction.
Received: 25.05.2000
English version:
Theoretical and Mathematical Physics, 2001, Volume 126, Issue 1, Pages 121–135
DOI: https://doi.org/10.1023/A:1005262400667
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: D. P. Sankovich, “Some Properties of Functional Integrals with Respect to the Bogoliubov Measure”, TMF, 126:1 (2001), 149–163; Theoret. and Math. Phys., 126:1 (2001), 121–135
Citation in format AMSBIB
\Bibitem{San01}
\by D.~P.~Sankovich
\paper Some Properties of Functional Integrals with Respect to the Bogoliubov Measure
\jour TMF
\yr 2001
\vol 126
\issue 1
\pages 149--163
\mathnet{http://mi.mathnet.ru/tmf421}
\crossref{https://doi.org/10.4213/tmf421}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1858200}
\zmath{https://zbmath.org/?q=an:1022.81028}
\transl
\jour Theoret. and Math. Phys.
\yr 2001
\vol 126
\issue 1
\pages 121--135
\crossref{https://doi.org/10.1023/A:1005262400667}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000168642200008}
Linking options:
  • https://www.mathnet.ru/eng/tmf421
  • https://doi.org/10.4213/tmf421
  • https://www.mathnet.ru/eng/tmf/v126/i1/p149
  • This publication is cited in the following 11 articles:
    1. Lifshits M. Nazarov A., “L-2-Small Deviations For Weighted Stationary Processes”, Mathematika, 64:2 (2018), 387–405  crossref  mathscinet  zmath  isi  scopus
    2. Nazarov A.I. Nikitin Ya.Yu., “On Small Deviation Asymptotics in l-2 of Some Mixed Gaussian Processes”, 6, no. 4, 2018, 55  crossref  zmath  isi  scopus  scopus
    3. V. R. Fatalov, “Functional integrals for the Bogoliubov Gaussian measure: Exact asymptotic forms”, Theoret. and Math. Phys., 195:2 (2018), 641–657  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    4. V. R. Fatalov, “Exact Laplace-type asymptotic formulas for the Bogoliubov Gaussian measure: The set of minimum points of the action functional”, Theoret. and Math. Phys., 191:3 (2017), 870–885  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    5. Nazarov A.I., Sheipak I.A., “Degenerate self-similar measures, spectral asymptotics and small deviations of Gaussian processes”, Bull London Math Soc, 44:1 (2012), 12–24  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    6. V. R. Fatalov, “Asymptotic behavior of small deviations for Bogoliubov's Gaussian measure in the Lp norm, 2p”, Theoret. and Math. Phys., 173:3 (2012), 1720–1733  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    7. V. R. Fatalov, “Laplace-type exact asymptotic formulas for the Bogoliubov Gaussian measure”, Theoret. and Math. Phys., 168:2 (2011), 1112–1149  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    8. R. S. Pusev, “Asymptotics of small deviations of the Bogoliubov processes with respect to a quadratic norm”, Theoret. and Math. Phys., 165:1 (2010), 1348–1357  mathnet  crossref  crossref  adsnasa  isi
    9. V. R. Fatalov, “Some asymptotic formulas for the Bogoliubov Gaussian measure”, Theoret. and Math. Phys., 157:2 (2008), 1606–1625  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    10. D. P. Sankovich, “The Bogolyubov Functional Integral”, Proc. Steklov Inst. Math., 251 (2005), 213–245  mathnet  mathscinet  zmath
    11. M. Corgini, D. P. Sankovich, “Local Gaussian Dominance: An Anharmonic Excitation of Free Bosons”, Theoret. and Math. Phys., 132:1 (2002), 1019–1028  mathnet  crossref  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:441
    Full-text PDF :214
    References:47
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025