Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1988, Volume 74, Number 1, Pages 94–102 (Mi tmf4171)  

This article is cited in 1 scientific paper (total in 1 paper)

On discreteness of the spectrum of some operator sheaves associated with a periodic Schrödinger equation

V. V. Dyakin, S. I. Petrukhnovskii
Full-text PDF (972 kB) Citations (1)
References:
Abstract: Three-dimensional periodic Schrödinger operators with potentials that are square integrable on the unit cell (single-electron model of a crystal) are considered. A description is given of the class of rational curves that do not have more than a finite number of common points with any isoenergy surface (in particular, the Fermi surface) of an arbitrary operator of the considered form. A consequence of a theorem proved in the paper is the absence on the isoenergy surfaces of elements of planes, cones, and cylinders with straight generators, and all possible paraboloids and hyperboloids. Another interesting consequence is the following assertion: The topological dimension of an isoenergy manifold does not exceed two, which justifies the use of the word “surface”. The results generalize the assertion of Thomas's theorem on the absence on isoenergy surfaces of straight edges.
Received: 22.05.1986
English version:
Theoretical and Mathematical Physics, 1988, Volume 74, Issue 1, Pages 66–72
DOI: https://doi.org/10.1007/BF01018212
Bibliographic databases:
Language: Russian
Citation: V. V. Dyakin, S. I. Petrukhnovskii, “On discreteness of the spectrum of some operator sheaves associated with a periodic Schrödinger equation”, TMF, 74:1 (1988), 94–102; Theoret. and Math. Phys., 74:1 (1988), 66–72
Citation in format AMSBIB
\Bibitem{DyaPet88}
\by V.~V.~Dyakin, S.~I.~Petrukhnovskii
\paper On discreteness of~the~spectrum of~some operator sheaves associated with a~periodic Schr\"odinger equation
\jour TMF
\yr 1988
\vol 74
\issue 1
\pages 94--102
\mathnet{http://mi.mathnet.ru/tmf4171}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=940464}
\transl
\jour Theoret. and Math. Phys.
\yr 1988
\vol 74
\issue 1
\pages 66--72
\crossref{https://doi.org/10.1007/BF01018212}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1988P630800008}
Linking options:
  • https://www.mathnet.ru/eng/tmf4171
  • https://www.mathnet.ru/eng/tmf/v74/i1/p94
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024