Abstract:
Under certain fairly general additional conditions, theorems are formulated which make it
possible to calculate many-time correlation averages and also chronological products of
Green's functions constructed on the basis of these averages. Particular attention is
devoted to the possibility of obtaining majorizing estimates that are uniform in the temperatare.
The method developed is valid for a large class of model systems characterized by
a Hamiltonian with a four-fermion interaction.
Citation:
N. N. Bogolyubov (Jr.), “Construction of limiting relations for many-time averages”, TMF, 4:3 (1970), 412–419; Theoret. and Math. Phys., 4:3 (1970), 929–935
\Bibitem{Bog70}
\by N.~N.~Bogolyubov (Jr.)
\paper Construction of limiting relations for many-time averages
\jour TMF
\yr 1970
\vol 4
\issue 3
\pages 412--419
\mathnet{http://mi.mathnet.ru/tmf4163}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=475500}
\zmath{https://zbmath.org/?q=an:0201.58102}
\transl
\jour Theoret. and Math. Phys.
\yr 1970
\vol 4
\issue 3
\pages 929--935
\crossref{https://doi.org/10.1007/BF01038306}
Linking options:
https://www.mathnet.ru/eng/tmf4163
https://www.mathnet.ru/eng/tmf/v4/i3/p412
This publication is cited in the following 7 articles:
N. N. Bogolubov, E. N. Bogolubova, S. P. Kruchinin, New Trends in Superconductivity, 2002, 277
N. N. Bogolyubov (Jr.), “The Hartree–Fock–Bogolyubov Approximation in the Models with Four-Fermion Interaction”, Proc. Steklov Inst. Math., 228 (2000), 252–273
N. N. Bogolyubov (Jr.), “Generalized theorems in the theory of model systems”, Theoret. and Math. Phys., 33:1 (1977), 885–897
N. N. Bogolyubov (Jr.), A. G. Shumovskaya, A. S. Shumovskii, “Generalization of the minimax principle for model quasispin problems”, Theoret. and Math. Phys., 21:2 (1974), 1125–1130
N. N. Bogolyubov (Jr.), “On a method of calculating correlation functions”, Theoret. and Math. Phys., 13:1 (1972), 1032–1038
A Method for Studying Model Hamiltonians, 1972, 165
N. N. Bogolyubov (Jr.), “New method of defining quasiaverages”, Theoret. and Math. Phys., 5:1 (1970), 1038–1046