Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2001, Volume 126, Number 1, Pages 3–62
DOI: https://doi.org/10.4213/tmf414
(Mi tmf414)
 

This article is cited in 7 scientific papers (total in 7 papers)

Semi-Infinite Realization of Unitary Representations of the $N=2$ Algebra and Related Constructions

A. M. Semikhatova, I. Yu. Tipunina, B. L. Feiginb

a P. N. Lebedev Physical Institute, Russian Academy of Sciences
b L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences
Full-text PDF (664 kB) Citations (7)
References:
Abstract: In the examples of the $N=2$ super-Virasoro algebra and the affine $\widehat{s\ell}(2)$ algebra, we investigate the construction of unitary representations of infinite-dimensional algebras in terms of “collective excitations” over a filled Dirac sea of fermionic or bosonic operators satisfying a generalized exclusion principle and represented by semi-infinite forms in the modes of one of the generators. We develop the methods for investigating properties of semi-infinite spaces (polynomial realization of the dual space) and for constructing the appropriate algebra action on these spaces (a filtration by subspaces similar to Demazure modules). We also consider relations of the semi-infinite realizations to the Rogers–Ramanujan-type identities, to the expression of coinvariants through meromorphic functions on products of Riemann surfaces with a prescribed behavior on multiple diagonals, and to some combinatorial facts; we also consider the relation between modular functors and fusion rules for the $N=2$ and $\widehat{s\ell}(2)$ theories.
Received: 24.07.2000
English version:
Theoretical and Mathematical Physics, 2001, Volume 126, Issue 1, Pages 1–47
DOI: https://doi.org/10.1023/A:1005286813871
Bibliographic databases:
Language: Russian
Citation: A. M. Semikhatov, I. Yu. Tipunin, B. L. Feigin, “Semi-Infinite Realization of Unitary Representations of the $N=2$ Algebra and Related Constructions”, TMF, 126:1 (2001), 3–62; Theoret. and Math. Phys., 126:1 (2001), 1–47
Citation in format AMSBIB
\Bibitem{SemTipFei01}
\by A.~M.~Semikhatov, I.~Yu.~Tipunin, B.~L.~Feigin
\paper Semi-Infinite Realization of Unitary Representations of the $N=2$ Algebra and Related Constructions
\jour TMF
\yr 2001
\vol 126
\issue 1
\pages 3--62
\mathnet{http://mi.mathnet.ru/tmf414}
\crossref{https://doi.org/10.4213/tmf414}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1858195}
\zmath{https://zbmath.org/?q=an:0998.81032}
\transl
\jour Theoret. and Math. Phys.
\yr 2001
\vol 126
\issue 1
\pages 1--47
\crossref{https://doi.org/10.1023/A:1005286813871}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000168642200001}
Linking options:
  • https://www.mathnet.ru/eng/tmf414
  • https://doi.org/10.4213/tmf414
  • https://www.mathnet.ru/eng/tmf/v126/i1/p3
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:576
    Full-text PDF :241
    References:71
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024