Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1970, Volume 4, Number 1, Pages 101–118 (Mi tmf4138)  

This article is cited in 31 scientific papers (total in 31 papers)

Gibbsian random fields for particles without hard core

R. L. Dobrushin
References:
Abstract: A study is made of the existence and uniqueness of a Gibbslan distribution of an infinite volume for particles without a hard core. Some bounds are also found for the probabilities of large density fluctuations in subvolumes.
Received: 03.11.1969
English version:
Theoretical and Mathematical Physics, 1970, Volume 4, Issue 1, Pages 705–719
DOI: https://doi.org/10.1007/BF01246670
Bibliographic databases:
Language: Russian
Citation: R. L. Dobrushin, “Gibbsian random fields for particles without hard core”, TMF, 4:1 (1970), 101–118; Theoret. and Math. Phys., 4:1 (1970), 705–719
Citation in format AMSBIB
\Bibitem{Dob70}
\by R.~L.~Dobrushin
\paper Gibbsian random fields for particles without hard core
\jour TMF
\yr 1970
\vol 4
\issue 1
\pages 101--118
\mathnet{http://mi.mathnet.ru/tmf4138}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=471837}
\zmath{https://zbmath.org/?q=an:1183.82024|1182.82002}
\transl
\jour Theoret. and Math. Phys.
\yr 1970
\vol 4
\issue 1
\pages 705--719
\crossref{https://doi.org/10.1007/BF01246670}
Linking options:
  • https://www.mathnet.ru/eng/tmf4138
  • https://www.mathnet.ru/eng/tmf/v4/i1/p101
  • This publication is cited in the following 31 articles:
    1. O.L. Rebenko, MATHEMATICAL FOUNDATIONS OF MODERN STATISTICAL MECHANICS, 2024  crossref
    2. Paula M. S. Fialho, Bernardo N. B. de Lima, Aldo Procacci, Benedetto Scoppola, “On the analyticity of the pressure for a non-ideal gas with high density boundary conditions”, Journal of Mathematical Physics, 64:5 (2023)  crossref
    3. Aldo Procacci, Sergio A. Yuhjtman, “Classical Particles in the Continuum Subjected to High Density Boundary Conditions”, Ann. Henri Poincaré, 23:3 (2022), 799  crossref
    4. Sabine Jansen, “Continuum percolation for Gibbsian point processes with attractive interactions”, Electron. J. Probab., 21:none (2016)  crossref
    5. Paolo Buttà, Guido Cavallaro, Carlo Marchioro, Lecture Notes in Mathematics, 2135, Mathematical Models of Viscous Friction, 2015, 1  crossref
    6. R. A. Minlos, E. A. Pecherskii, S. A. Pirogov, “Gibbs random fields on a lattice: Definitions, existence, uniqueness, and phase transitions (a review of proceedings of the seminar on statistical physics at the faculty of mechanics and mathematics of the Moscow state university in 1962–1994)”, J. Commun. Technol. Electron., 59:6 (2014), 576  crossref
    7. YURI KONDRATIEV, TANJA PASUREK, MICHAEL RÖCKNER, “GIBBS MEASURES OF CONTINUOUS SYSTEMS: AN ANALYTIC APPROACH”, Rev. Math. Phys., 24:10 (2012), 1250026  crossref
    8. Jean Bellissard, Charles Radin, Senya Shlosman, “The characterization of ground states”, J. Phys. A: Math. Theor., 43:30 (2010), 305001  crossref
    9. E. Pechersky, A. Yambartsev, “Percolation Properties of the Non-ideal Gas”, J Stat Phys, 137:3 (2009), 501  crossref
    10. S. Shlosman, M. A. Tsfasman, “Random lattices and random sphere packings: typical properties”, Mosc. Math. J., 1:1 (2001), 73–89  mathnet  crossref  mathscinet  zmath
    11. S. ALBEVERIO, YU. G. KONDRATIEV, M. RÖCKNER, “DIFFEOMORPHISM GROUPS AND CURRENT ALGEBRAS: CONFIGURATION SPACE ANALYSIS IN QUANTUM THEORY”, Rev. Math. Phys., 11:01 (1999), 1  crossref
    12. S Albeverio, Yu.G Kondratiev, M Röckner, “Analysis and Geometry on Configuration Spaces: The Gibbsian Case”, Journal of Functional Analysis, 157:1 (1998), 242  crossref
    13. S Albeverio, Yu.G Kondratiev, M Röckner, “Analysis and Geometry on Configuration Spaces”, Journal of Functional Analysis, 154:2 (1998), 444  crossref
    14. R. A. Minlos, “R. L. Dobrushin – one of the founders of modern mathematical physics”, Russian Math. Surveys, 52:2 (1997), 251–256  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    15. H. -O. Georgii, O. Häggström, “Phase transition in continuum Potts models”, Commun.Math. Phys., 181:2 (1996), 507  crossref
    16. E. V. Radkevich, “The existence of a Gibbs random field for systems of particles with impulses”, Russian Math. Surveys, 50:6 (1995), 1301–1303  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    17. Hans-Otto Georgii, “The equivalence of ensembles for classical systems of particles”, J Stat Phys, 80:5-6 (1995), 1341  crossref
    18. Hans-Otto Georgii, “Large deviations and the equivalence of ensembles for Gibbsian particle systems with superstable interaction”, Probab. Th. Rel. Fields, 99:2 (1994), 171  crossref
    19. B. M. Gurevich, “On the joint distribution of random variables with given mutual conditional distributions (the discrete case)”, Theory Probab. Appl., 36:2 (1991), 371–375  mathnet  mathnet  crossref  isi
    20. R. L. Dobrushin, Ya. G. Sinai, Yu. M. Sukhov, Encyclopaedia of Mathematical Sciences, 2, Dynamical Systems II, 1989, 208  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:564
    Full-text PDF :168
    References:97
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025