Abstract:
A study is made of the existence and uniqueness of a Gibbslan distribution of an infinite volume for particles without a hard core. Some bounds are also found for the probabilities of large density fluctuations in subvolumes.
Citation:
R. L. Dobrushin, “Gibbsian random fields for particles without hard core”, TMF, 4:1 (1970), 101–118; Theoret. and Math. Phys., 4:1 (1970), 705–719
\Bibitem{Dob70}
\by R.~L.~Dobrushin
\paper Gibbsian random fields for particles without hard core
\jour TMF
\yr 1970
\vol 4
\issue 1
\pages 101--118
\mathnet{http://mi.mathnet.ru/tmf4138}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=471837}
\zmath{https://zbmath.org/?q=an:1183.82024|1182.82002}
\transl
\jour Theoret. and Math. Phys.
\yr 1970
\vol 4
\issue 1
\pages 705--719
\crossref{https://doi.org/10.1007/BF01246670}
Linking options:
https://www.mathnet.ru/eng/tmf4138
https://www.mathnet.ru/eng/tmf/v4/i1/p101
This publication is cited in the following 31 articles:
O.L. Rebenko, MATHEMATICAL FOUNDATIONS OF MODERN STATISTICAL MECHANICS, 2024
Paula M. S. Fialho, Bernardo N. B. de Lima, Aldo Procacci, Benedetto Scoppola, “On the analyticity of the pressure for a non-ideal gas with high density boundary conditions”, Journal of Mathematical Physics, 64:5 (2023)
Aldo Procacci, Sergio A. Yuhjtman, “Classical Particles in the Continuum Subjected to High Density Boundary Conditions”, Ann. Henri Poincaré, 23:3 (2022), 799
Sabine Jansen, “Continuum percolation for Gibbsian point processes with attractive interactions”, Electron. J. Probab., 21:none (2016)
Paolo Buttà, Guido Cavallaro, Carlo Marchioro, Lecture Notes in Mathematics, 2135, Mathematical Models of Viscous Friction, 2015, 1
R. A. Minlos, E. A. Pecherskii, S. A. Pirogov, “Gibbs random fields on a lattice: Definitions, existence, uniqueness, and phase transitions (a review of proceedings of the seminar on statistical physics at the faculty of mechanics and mathematics of the Moscow state university in 1962–1994)”, J. Commun. Technol. Electron., 59:6 (2014), 576
YURI KONDRATIEV, TANJA PASUREK, MICHAEL RÖCKNER, “GIBBS MEASURES OF CONTINUOUS SYSTEMS: AN ANALYTIC APPROACH”, Rev. Math. Phys., 24:10 (2012), 1250026
Jean Bellissard, Charles Radin, Senya Shlosman, “The characterization of ground states”, J. Phys. A: Math. Theor., 43:30 (2010), 305001
E. Pechersky, A. Yambartsev, “Percolation Properties of the Non-ideal Gas”, J Stat Phys, 137:3 (2009), 501
S. Shlosman, M. A. Tsfasman, “Random lattices and random sphere packings: typical properties”, Mosc. Math. J., 1:1 (2001), 73–89
S. ALBEVERIO, YU. G. KONDRATIEV, M. RÖCKNER, “DIFFEOMORPHISM GROUPS AND CURRENT ALGEBRAS: CONFIGURATION SPACE ANALYSIS IN QUANTUM THEORY”, Rev. Math. Phys., 11:01 (1999), 1
S Albeverio, Yu.G Kondratiev, M Röckner, “Analysis and Geometry on Configuration Spaces: The Gibbsian Case”, Journal of Functional Analysis, 157:1 (1998), 242
S Albeverio, Yu.G Kondratiev, M Röckner, “Analysis and Geometry on Configuration Spaces”, Journal of Functional Analysis, 154:2 (1998), 444
R. A. Minlos, “R. L. Dobrushin – one of the founders of modern mathematical physics”, Russian Math. Surveys, 52:2 (1997), 251–256
H. -O. Georgii, O. Häggström, “Phase transition in continuum Potts models”, Commun.Math. Phys., 181:2 (1996), 507
E. V. Radkevich, “The existence of a Gibbs random field for systems of particles with impulses”, Russian Math. Surveys, 50:6 (1995), 1301–1303
Hans-Otto Georgii, “The equivalence of ensembles for classical systems of particles”, J Stat Phys, 80:5-6 (1995), 1341
Hans-Otto Georgii, “Large deviations and the equivalence of ensembles for Gibbsian particle systems with superstable interaction”, Probab. Th. Rel. Fields, 99:2 (1994), 171
B. M. Gurevich, “On the joint distribution of random variables with given mutual conditional distributions (the discrete case)”, Theory Probab. Appl., 36:2 (1991), 371–375
R. L. Dobrushin, Ya. G. Sinai, Yu. M. Sukhov, Encyclopaedia of Mathematical Sciences, 2, Dynamical Systems II, 1989, 208